留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

格特隐球菌基因组学研究进展

贾鑫淼 肖盟 孙天舒 徐英春

贾鑫淼, 肖盟, 孙天舒, 徐英春. 格特隐球菌基因组学研究进展[J]. 协和医学杂志, 2019, 10(5): 505-513. doi: 10.3969/j.issn.1674-9081.2019.05.014
引用本文: 贾鑫淼, 肖盟, 孙天舒, 徐英春. 格特隐球菌基因组学研究进展[J]. 协和医学杂志, 2019, 10(5): 505-513. doi: 10.3969/j.issn.1674-9081.2019.05.014
Xin-miao JIA, Meng XIAO, Tian-shu SUN, Ying-chun XU. Advances in Genomic Research of Cryptococcus Gattii[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(5): 505-513. doi: 10.3969/j.issn.1674-9081.2019.05.014
Citation: Xin-miao JIA, Meng XIAO, Tian-shu SUN, Ying-chun XU. Advances in Genomic Research of Cryptococcus Gattii[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(5): 505-513. doi: 10.3969/j.issn.1674-9081.2019.05.014

格特隐球菌基因组学研究进展

doi: 10.3969/j.issn.1674-9081.2019.05.014
基金项目: 

北京市自然科学基金 5184037

中央高校基本科研业务费专项资金 3332018024

"十三五"国家科技重大专项 2018ZX10712001

河北省科技计划项目 17277775D

详细信息
    通讯作者:

    徐英春 电话:010-69159766, E-mail:xycpumch@139.com

  • 中图分类号: R379.5;Q933

Advances in Genomic Research of Cryptococcus Gattii

More Information
    Corresponding author: XU Ying-chun Tel: 86-10-69159766, E-mail:xycpumch@139.com
  • 摘要: 格特隐球菌属于新生隐球菌复合体, 既往被认为是新生隐球菌复合体的变种, 但最终被确立为独立的物种。与新生隐球菌不同, 格特隐球菌多感染免疫力正常人群, 目前致病机制尚未明确。格特隐球菌的基因组学研究不仅可全面了解其基因组成、分子进化、毒力因子以及致病机制等特点, 还可对致病相关基因和重要蛋白进行预测, 为疫苗和新型抗生素的研发提供分子基础, 并进一步为高效治疗和防控隐球菌病提供理论依据。本文就格特隐球菌的基因组测序和基本特征、基因组进化、重要毒力基因以及比较基因组研究予以概述。
    利益冲突  无
  • 图  1  格特隐球菌菌株多位点序列分型进化树[2]

    表  1  格特隐球菌重要致病性相关基因[2]

    基因 功能 表型
    SOD1 细胞质抗氧化 毒力因子脲酶、磷脂酶B和漆酶的产生
    SOD2 线粒体抗氧化 在37 ℃ 20%的氧气下生长
    TPS1/ TPS2 海藻糖(一种抗氧化剂和压力保护剂)生物合成 交配、荚膜/黑色素的产生、细胞壁的完整性和耐热性
    PKA1 信号转导通路调节子 交配、荚膜/黑色素的产生、宿主病原体相互作用
    PKA2 信号转导通路调节子 交配、荚膜/黑色素的产生
    PLC1 信号转导通路调节子 37 ℃下生长、黑色素/磷脂酶产生
    MPK1 信号转导通路调节子 调节黑色素和荚膜产生以及细胞壁完整性
    STE12ɑ 转录因子 调节黑色素产生、交配和生态适应性
    GAT1 GATA转录因子 调节氮利用
    CNA1 钙调素异二聚体亚基ꎬ钙调素活化的丝氨酸 ̄苏氨酸特异性蛋白磷酸酶 调节耐热性、质膜完整性、氟康唑耐受性和在游离钙存在下的生长
    下载: 导出CSV

    表  2  不同谱系格特隐球菌特异基因

    谱系 基因类别
    VG Ⅰ 铁还原酶样跨膜组分和铁还原酶NAD结合结构域基因
    VG Ⅱ 膜转运相关的膜分泌载体膜蛋白基因、Prmt1 (Fop)染色质相关基因以及热休克蛋白70
    VG Ⅲ PIF1样解旋酶和磷酸丙酮酸水合酶/烯醇酶基因
    VG Ⅳ 缺失Ctr铜转运蛋白家族结构域的3个基因中的1个ꎬ以及3种卤酸脱卤素酶的Pfam结构域基因
    下载: 导出CSV
  • [1] Kwon-Chung KJ, Varma A. Do major species concepts support one, two or more species within Cryptococcus neoformans?[J]. FEMS Yeast Res, 2006, 6:574-587. doi:  10.1111/j.1567-1364.2006.00088.x
    [2] Chen SCA, Meyer W, Sorrell TC. Cryptococcus gattii Infections[J]. Clin Microbiol Rev, 2014, 27:980-1024. doi:  10.1128/CMR.00126-13
    [3] Chen CH, Wang SH, Chen WL, et al. Ocular complications caused by Cryptococcus gattii AFLP4/VGI meningitis in an immunocompetent host[J]. Rev Inst Med Trop Sao Paulo, 2016, 58:85. http://www.ncbi.nlm.nih.gov/pubmed/27828626
    [4] Meyer W. Cryptococcus gattii in the age of whole-genome sequencing[J]. Mbio, 2015, 6:e01761-15. http://www.onacademic.com/detail/journal_1000039286797010_4fa1.html
    [5] Bovers M, Hagen F, Kuramae EE, et al. Six monophyletic lineages identified within Cryptococcus neoformans and Cryptococcus gattii by multi-locus sequence typing[J]. Fungal Genet Biol, 2008, 45:400-421. doi:  10.1016/j.fgb.2007.12.004
    [6] Kidd SE, Hagen F, Tscharke RL, et al. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada)[J]. Proc Natl Acad Sci U S A, 2004, 101:17258-17263. doi:  10.1073/pnas.0402981101
    [7] Meyer W, Castaneda A, Jackson S, et al. Molecular typing of IberoAmerican Cryptococcus neoformans isolates[J]. Emerg Infect Dis, 2003, 9:189-195. doi:  10.3201/eid0902.020246
    [8] Trilles L, Lazera M, Wanke B, et al.Genetic characterization of environmental isolates of the Cryptococcus neoformans species complex from Brazil[J]. Med Mycol, 2003, 41:383-390. doi:  10.1080/1369378031000137206
    [9] Trilles L, Lazera Mdos S, Wanke B, et al. Regional pattern of the molecular types of Cryptococcus neoformans and Cryptococcus gattii in Brazil[J]. Mem I Oswaldo Cruz, 2008, 103:455-462. doi:  10.1590/S0074-02762008000500008
    [10] Harris JR, Lockhart SR, Debess E, et al. Cryptococcus gattii in the United States:clinical aspects of infection with an emerging pathogen[J]. Clinl Infect Dis, 2011, 53:1188-1195. doi:  10.1093/cid/cir723
    [11] 窦红涛, 万喆, 杨启文, 等.格特隐球菌在河北地区引起1例脑膜炎的临床与实验研究[J].中国真菌学杂志, 2015, 10:11-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgzjxzz201501003
    [12] 金亮, 沈定霞.格特隐球菌感染的临床特征与实验室研究进展[J].检验医学, 2017, 32:1065-1069. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shyxjyzz201711030
    [13] 葛瑛, 张凯宇, 马小军, 等.隐球菌脑膜炎62例临床分析[J].协和医学杂志, 2018, 9:431-436. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xhyx201805011
    [14] Velez N, Escandon P. Report on novel environmental niches for Cryptococcus neoformans and Cryptococcus gattii in Colombia:Tabebuia guayacan and Roystonea regia[J]. Med Mycol, 2017, 55:794-797. http://academic.oup.com/mmy/article/55/7/794/2937964
    [15] D'Souza CA, Kronstad JW, Taylor G, et al. Genome variation in Cryptococcus gattii, an emerging pathogen of immunocompetent hosts[J]. Mbio, 2011, 2:e00342-10. https://www.ncbi.nlm.nih.gov/pubmed/21304167
    [16] Bovers M, Hagen F, Kuramae EE, et al. Promiscuous mitochondria in Cryptococcus gattii[J]. FEMS Yeast Res, 2009, 9:489-503. doi:  10.1111/j.1567-1364.2009.00494.x
    [17] Ngamskulrungroj P, Gilgado F, Faganello J, et al. Genetic diversity of the Cryptococcus species complex suggests that Cryptococcus gattii deserves to have varieties[J]. PLoS One, 2009, 4:e5862. doi:  10.1371/journal.pone.0005862
    [18] Xu J, Vilgalys R, Mitchell TG. Multiple gene genealogies reveal recent dispersion and hybridization in the human pathogenic fungus Cryptococcus neoformans[J]. Mol Ecol, 2000, 9:1471-1481. doi:  10.1046/j.1365-294x.2000.01021.x
    [19] Gonzalez GM, Casillas-Vega N, Garza-Gonzalez E, et al. Molecular typing of clinical isolates of Cryptococcus neoformans/Cryptococcus gattii species complex from Northeast Mexico[J]. Folia Microbiol, 2016, 61:51-56. doi:  10.1007/s12223-015-0409-8
    [20] Gillece JD, Schupp JM, Balajee SA, et al. Whole genome sequence analysis of Cryptococcus gattii from the Pacific Northwest reveals unexpected diversity[J]. PLoS One, 2011, 6:e28550. doi:  10.1371/journal.pone.0028550
    [21] Hagen F, Ceresini PC, Polacheck I, et al. Ancient dispersal of the human fungal pathogen Cryptococcus gattii from the Amazon rainforest[J]. PLoS One, 2013, 8:e71148. doi:  10.1371/journal.pone.0071148
    [22] Engelthaler DM, Hicks ND, Gillece JD, et al. Cryptococcus gattii in North American Pacific Northwest:Whole-popula-tion genome analysis provides insights into species evolution and dispersal[J]. Mbio, 2014, 5:e01464-14. http://pubmedcentralcanada.ca/pmcc/articles/PMC4161256/
    [23] Billmyre RB, Croll D, Li WJ, et al. Highly recombinant VGII Cryptococcus gattii population develops clonal outbreak clusters through both sexual macroevolution and asexual microevolution[J]. Mbio, 2014, 5:e01494-14.
    [24] Byrnes EJ, Bildfell RJ, Frank SA, et al. Molecular evidence that the range of the Vancouver Island out-break of Cryptococcus gattii infection has expanded into the Pacific Northwest in the United States[J]. J Infect Dis, 2009, 199:1081-1086. doi:  10.1086/597306
    [25] Hagen F, Colom MF, Swinne D, et al. Autochthonous and dormant Cryptococcus gattii infections in Europe[J]. Emerg Infect Dis, 2012, 18:1618-1624. doi:  10.3201/eid1810.120068
    [26] Steele KT, Thakur R, Nthobatsang R, et al. In-hospital mortality of HIV-infected cryptococcal meningitis patients with C. gattii and C. neoformans infection in Gaborone, Botswana[J]. Med Mycol, 2010, 48:1112-1115. doi:  10.3109/13693781003774689
    [27] Carriconde F, Gilgado F, Arthur I, et al. Clonality and alpha-a recombination in the Australian Cryptococcus gattii VGII population-an emerging outbreak in Australia[J]. PLoS One, 2011, 6:e16936. doi:  10.1371/journal.pone.0016936
    [28] Kronstad JW, Attarian R, Cadieux B, et al. Expanding fungal pathogenesis:Cryptococcus breaks out of the opportunistic box[J]. Nat Rev Microbiol, 2011, 9:193-203. doi:  10.1038/nrmicro2522
    [29] Ma H, May RC. Virulence in Cryptococcus species[J]. Adv Appl Microbiol, 2009, 67:131-190. doi:  10.1016/S0065-2164(08)01005-8
    [30] Kozel TR, Gotschlich EC. The capsule of Cryptococcus neoformans passively inhibits phagocytosis of the yeast by macrophages[J]. J Immunol, 1982, 129:1675-1680.
    [31] Tucker SC, Casadevall A. Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm[J]. Proc Natl Acad Sci U S A, 2002, 99:3165-3170. doi:  10.1073/pnas.052702799
    [32] Feldmesser M, Kress Y, Novikoff P, et al.Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection[J]. Infect Immun, 2000, 68:4225-4237. doi:  10.1128/IAI.68.7.4225-4237.2000
    [33] Casadevall A, Rosas AL, Nosanchuk JD. Melanin and virulence in Cryptococcus neoformans[J]. Curr Opin Microbiol, 2000, 3:354-358. doi:  10.1016/S1369-5274(00)00103-X
    [34] Williamson PR. Laccase and melanin in the pathogenesis of Cryptococcus neoformans[J]. Frontiers Biosci, 1997, 2:e99-e107. doi:  10.2741/A231
    [35] van Duin D, Casadevall A, Nosanchuk JD. Melanization of Cryptococcus neoformans and histoplasma capsulatum reduces their susceptibilities to amphotericin B and caspofungin[J]. Antimicrob Agents Ch, 2002, 46:3394-3400. doi:  10.1128/AAC.46.11.3394-3400.2002
    [36] Perfect JR. Cryptococcus neoformans:A sugar-coated killer with designer genes[J]. Fems Immunol Med Mic, 2005, 45:395-404. doi:  10.1016/j.femsim.2005.06.005
    [37] Ghannoum MA. Potential role of phospholipases in virulence and fungal pathogenesis[J]. Clin Microbiol Rev, 2000, 13:122-143. doi:  10.1128/CMR.13.1.122
    [38] Cox GM, McDade HC, Chen SCA, et al. Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans[J]. Mol Microbiol, 2001, 39:166-175. doi:  10.1046/j.1365-2958.2001.02236.x
    [39] Steenbergen JN, Casadevall A. The origin and maintenance of virulence for the human pathogenic fungus Cryptococcus neoformans[J]. Microbes Infect, 2003, 5:667-675. doi:  10.1016/S1286-4579(03)00092-3
    [40] Ganendren R, Carter E, Sorrell T, et al.Phospholipase B activity enhances adhesion of Cryptococcus neoformans to a human lung epithelial cell line[J]. Microbes Infect, 2006, 8:1006-1015. doi:  10.1016/j.micinf.2005.10.018
    [41] Santangelo R, Zoellner H, Sorrell T, et al. Role of extracellular phospholipases and mononuclear phagocytes in dissemination of cryptococcosis in a murine model[J]. Infect Immun, 2004, 72:2229-2239. doi:  10.1128/IAI.72.4.2229-2239.2004
    [42] Cox GM, Mukherjee J, Cole GT, et al.Urease as a virulence factor in experimental cryptococcosis[J]. Infect Immun, 2000, 68:443-448. doi:  10.1128/IAI.68.2.443-448.2000
    [43] Kwonchung KJ, Bennett JE. Distribution of alpha and a mating types of Cryptococcus neoformans among natural and clinical isolates[J]. Am J Epidemiol, 1978, 108:337-340. doi:  10.1093/oxfordjournals.aje.a112628
    [44] Kwon-Chung KJ, Edman JC, Wickes BL. Genetic association of mating types and virulence in Cryptococcus neoformans[J]. Infect Immun, 1992, 60:602-605. doi:  10.1128/IAI.60.2.602-605.1992
    [45] Karos M, Chang YC, McClelland CM, et al. Mapping of the Cryptococcus neoformans MAT alpha locus:Presence of mating type-specific mitogen-activated protein kinase cascade homologs[J]. J Bacteriol, 2000, 182:6222-6227. doi:  10.1128/JB.182.21.6222-6227.2000
    [46] Fraser JA, Heitman J. Evolution of fungal sex chromosomes[J]. Mol Microbiol, 2004, 51:299-306. doi:  10.1046/j.1365-2958.2003.03874.x
    [47] Farrer RA, Desjardins CA, Sakthikumar S, et al. Genome evolution and innovation across the four major lineages of Cryptococcus gattii[J]. Mbio, 2015, 6:e00868-15. http://www.ncbi.nlm.nih.gov/pubmed/26330512
    [48] Janbon G, Ormerod KL, Paulet D, et al. Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation[J]. PLoS Genet, 2014, 10:e1004261. doi:  10.1371/journal.pgen.1004261
    [49] Hu G, Wang J, Choi J, et al. Variation in chromosome copy number influences the virulence of Cryptococcus neoformans and occurs in isolates from AIDS patients[J]. BMC Genomics, 2011, 12:526. doi:  10.1186/1471-2164-12-526
    [50] Hudson RR. Genetic data analysis:Methods for discrete population genetic data[J]. Science, 1990, 250:575. doi:  10.1126/science.250.4980.575
    [51] Saikia S, Oliveira D, Hu G, et al.Role of ferric reductases in iron acquisition and virulence in the fungal pathogen Cryptococcus neoformans[J]. Infect Immun, 2014, 82:839-850. doi:  10.1128/IAI.01357-13
    [52] Aravind L, Koonin EV. The HORMA domain:a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair[J]. Trends Biochem Sci, 1998, 23:284-286.
    [53] van Dijk TB, Gillemans N, Stein C, et al. Friend of Prmt1, a novel chromatin target of protein arginine methyltrans-ferases[J]. Mol cell biol, 2010, 30:260-272. http://europepmc.org/articles/PMC2798285/
    [54] Zhang S, Hacham M, Panepinto J, et al. The Hsp70 member, Ssa1, acts as a DNA-binding transcriptional co-activ-ator of laccase in Cryptococcus neoformans[J]. Mol Microbiol, 2006, 62:1090-1101. http://www.ncbi.nlm.nih.gov/pubmed/17040492?ordinalpos=5&itool=EntrezSystem2
    [55] Janbon G, Maeng S, Yang DH, et al. Characterizing the role of RNA silencing components in Cryptococcus neoformans[J]. Fungal Genet Biol, 2010, 47:1070-1080. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f6d18bc065d82c6c3a7f1da1d755d071
    [56] Wang X, Hsueh YP, Li W, et al.Sex-induced silencing defends the genome of Cryptococcus neoformans via RNAi[J]. Gene Dev, 2010, 24:2566-2582. http://genesdev.cshlp.org/content/24/22/2566.full.pdf
    [57] Gao XD, Tachikawa H, Sato T, et al. Alg14 recruits Alg13 to the cytoplasmic face of the endoplasmic reticulum to form a novel bipartite UDP-N-acetylglucosamine transferase required for the second step of N-linked glycosylation[J]. J Biol Chem, 2005, 280:36254-36262. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8dd133fcd6b5badce5a640ab1bf7fb84
    [58] Bochman ML, Sabouri N, Zakian VA. Unwinding the functions of the Pif1 family helicases[J]. DNA Repair, 2010, 9:237-249. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bf6d83ab985e39245ccd206a79ee27a6
    [59] Giles SS, Perfect JR, Cox GM. Cytochrome c peroxidase contributes to the antioxidant defense of Cryptococcus neoformans[J]. Fungal Genet Biol, 2005, 42:20-29. http://europepmc.org/abstract/med/15588993
    [60] Breitenbach M, Simon B, Probst G, et al. Enolases are highly conserved fungal allergens[J]. Int Arch Allergy Imm, 1997, 113:114-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aeb3a0b2692612a71d30e7030d8e789a
    [61] Kawabe M, Okabe Onokubo A, Arimoto Y, et al. GMC oxidoreductase, a highly expressed protein in a potent biocontrol agent Fusarium oxysporum Cong:1-2, is dispensable for biocontrol activity[J]. J Gen Appl Microbiol, 2011, 57:207-217.
    [62] Sun TS, Ju X, Gao HL, et al. Reciprocal functions of Cryptococcus neoformans copper homeostasis machinery during pulmonary infection and meningoencephalitis[J]. Nat Commun, 2014, 5:5550.
    [63] Burroughs AM, Allen KN, Dunaway-Mariano D, et al.Evolutionary genomics of the HAD superfamily:understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes[J]. J Mol Biol, 2006, 361:1003-1034. http://www.ncbi.nlm.nih.gov/pubmed/16889794
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  665
  • HTML全文浏览量:  106
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-14
  • 刊出日期:  2019-09-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!