留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肠道菌群在天然免疫系统中的作用

焦禹豪 陈蓓迪 张烜

焦禹豪, 陈蓓迪, 张烜. 肠道菌群在天然免疫系统中的作用[J]. 协和医学杂志, 2019, 10(3): 257-262. doi: 10.3969/j.issn.1674-9081.2019.03.012
引用本文: 焦禹豪, 陈蓓迪, 张烜. 肠道菌群在天然免疫系统中的作用[J]. 协和医学杂志, 2019, 10(3): 257-262. doi: 10.3969/j.issn.1674-9081.2019.03.012
Yu-hao JIAO, Bei-di CHEN, Xuan ZHANG. Interplay between the Gut Microbiota and the Innate Immune System[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(3): 257-262. doi: 10.3969/j.issn.1674-9081.2019.03.012
Citation: Yu-hao JIAO, Bei-di CHEN, Xuan ZHANG. Interplay between the Gut Microbiota and the Innate Immune System[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(3): 257-262. doi: 10.3969/j.issn.1674-9081.2019.03.012

肠道菌群在天然免疫系统中的作用

doi: 10.3969/j.issn.1674-9081.2019.03.012
详细信息
    通讯作者:

    张烜 电话:010-69158797, E-mail:zxpumch2003@sina.com

  • 中图分类号: R378;R593

Interplay between the Gut Microbiota and the Innate Immune System

More Information
  • 摘要: 人体微生物群在调控黏膜局部稳态中的重要性受到广泛重视, 有关微生物群与免疫相互作用的研究在近几年亦取得了很大进展。肠道菌群作为人体微生物群的重要组成部分, 在维持肠道宿主防御和免疫耐受二者平衡方面发挥关键作用。肠道菌群失调也被众多研究证实与免疫系统改变相关。本文主要围绕肠道相关淋巴组织、天然免疫淋巴细胞和吞噬细胞等几个方面, 阐述肠道菌群在天然免疫系统中的作用。
    利益冲突  无
  • [1] Schopf JW, Packer BM.Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia[J]. Science, 1987, 237:70-73. doi:  10.1126/science.11539686
    [2] Maynard CL, Elson CO, Hatton RD, et al. Reciprocal interactions of the intestinal microbiota and immune system[J]. Nature, 2012, 489:231-241. doi:  10.1038/nature11551
    [3] Lederberg J.Infectious history[J]. Science, 2000, 288:287-293. doi:  10.1126/science.288.5464.287
    [4] Gill SR, Pop M, DeBoy RT, et al. Metagenomic analysis of the human distal gut microbiome[J]. Science, 2006, 312:1355-1359. doi:  10.1126/science.1124234
    [5] Thursby E, Juge N.Introduction to the human gut microbiota[J]. Biochem J, 2017, 474:1823-1836. doi:  10.1042/BCJ20160510
    [6] Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body[J]. PLoS Biol, 2016, 14:e1002533. doi:  10.1371/journal.pbio.1002533
    [7] Akira S, Uematsu S, Takeuchi O.Pathogen recognition and innate immunity[J]. J Cell, 2006, 124:783-801. doi:  10.1016/j.cell.2006.02.015
    [8] Abrams GD, Bauer H, Sprinz H.Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice[J]. Lab Invest, 1963, 12:355-364.
    [9] Pollard M, Sharon N.Responses of the Peyer's patches in germ-free mice to antigenic stimulation[J]. Infect Immun, 1970, 2:96-100. doi:  10.1128/IAI.2.1.96-100.1970
    [10] Cebra JJ, Periwal SB, Lee G, et al., Development and maintenance of the gut-associated lymphoid tissue (GALT):the roles of enteric bacteria and viruses[J]. J Immunol Res, 1998, 6:13-18. https://pubmed.ncbi.nlm.nih.gov/9716901/
    [11] Medzhitov R, Janeway Jr C. The Toll receptor family and microbial recognition[J]. Trends Microbiol, 2000, 8:452-456. doi:  10.1016/S0966-842X(00)01845-X
    [12] Mabbott NA, Donaldson DS, Ohno H, et al. Microfold (M) cells:important immunosurveillance posts in the intestinal epithelium[J]. Mucosal Immunol, 2013, 6:666-677. doi:  10.1038/mi.2013.30
    [13] Min YW, Rhee PL.The role of microbiota on the gut immunology[J]. Clin Ther, 2015, 37:968-975. doi:  10.1016/j.clinthera.2015.03.009
    [14] Gordon HA, Bruckner-Kardoss E, Wostmann BS.Aging in germ-free mice:life tables and lesions observed at natural death[J]. J Gerontol, 1966, 21:380-387. doi:  10.1093/geronj/21.3.380
    [15] Bouskra D, Brézillon C, Bérard M, et al.Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis[J]. Nature, 2008, 456:507-510. doi:  10.1038/nature07450
    [16] Mebius RE, Rennert P, Weissman IL. Developing lymph nodes collect CD4+CD3-LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells[J]. Immunity, 1997, 7:493-504. doi:  10.1016/S1074-7613(00)80371-4
    [17] Adachi S, Yoshida H, Kataoka H, et al.Three distinctive steps in Peyer's patch formation of murine embryo[J]. Int Immunol, 1997, 9:507-514. doi:  10.1093/intimm/9.4.507
    [18] Round JL, Lee SM, Li J, et al.The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota[J]. Science, 2011, 332:974-977. doi:  10.1126/science.1206095
    [19] Clarke TB, Davis KM, Lysenko ES, et al.Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity[J]. Nat Med, 2010, 16:228-231. doi:  10.1038/nm.2087
    [20] Asquith MJ, Boulard O, Powrie F, et al.Pathogenic and protective roles of MyD88 in leukocytes and epithelial cells in mouse models of inflammatory bowel disease[J]. Gastroenterology, 2010, 139:519-529, e2. doi:  10.1053/j.gastro.2010.04.045
    [21] Dessein, R, Gironella M, Vignal C, et al.TLR2 is critical for induction of REG3β expression and intestinal clearance of Yersinia pseudotuberculosis[J]. Gut, 2009, 58:771-776. doi:  10.1136/gut.2008.168443
    [22] Chang PV, Hao L, Offermanns S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition[J]. Proc Natl Acad Sci U S A, 2014, 111:2247-2252. doi:  10.1073/pnas.1322269111
    [23] Spits H, Cupedo T. Innate lymphoid cells:emerging insights in development, lineage relationships, and function[J]. Ann Rev Immunol, 2012, 30:647-675. doi:  10.1146/annurev-immunol-020711-075053
    [24] Chiossone L, Dumas PY, Vienne M, et al. Natural killer cells and other innate lymphoid cells in cancer[J]. Nat Rev Immunol, 2018, 18:671-688. doi:  10.1038/s41577-018-0061-z
    [25] Cherrier DE, Serafini N, Di Santo JP.Innate Lymphoid Cell Development:A T Cell Perspective[J]. Immunity, 2018, 48:1091-1103. doi:  10.1016/j.immuni.2018.05.010
    [26] Fuchs A, Vermi W, Lee JS, et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12-and IL-15-responsive IFN-γ-producing cells[J]. Immunity, 2013, 38:769-781. doi:  10.1016/j.immuni.2013.02.010
    [27] Klose CS, Flach M, Möhle L, et al.Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages[J]. Cell, 2014, 157:340-356. doi:  10.1016/j.cell.2014.03.030
    [28] Jiao Y, Huntington ND, Belz GT, et al.Type 1 Innate Lymphoid Cell Biology:Lessons Learnt from Natural Killer Cells[J]. Front Immunol, 2016, 7:426. https://pubmed.ncbi.nlm.nih.gov/27785129/
    [29] Hoyler T, Klose CS, Souabni A, et al., The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells[J]. Immunity, 2012, 37:634-648. doi:  10.1016/j.immuni.2012.06.020
    [30] Roediger B, Kyle R, Yip KH, et al.Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells[J]. Nat Immunol, 2013, 14:564-573. doi:  10.1038/ni.2584
    [31] Vivier E, Artis D, Colonna M, et al. Innate Lymphoid Cells:10 Years On[J]. Cell, 2018, 174:1054-1066. doi:  10.1016/j.cell.2018.07.017
    [32] Vivier E, Ugolini S, Blaise D, et al. Targeting natural killer cells and natural killer T cells in cancer[J]. Nat Rev Immunol, 2012, 12:239-252. doi:  10.1038/nri3174
    [33] Colonna M. Innate Lymphoid Cells:Diversity, Plasticity, and Unique Functions in Immunity[J]. Immunity, 2018, 48:1104-1117. doi:  10.1016/j.immuni.2018.05.013
    [34] Björklund AK, Forkel M, Picelli S, et al.The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing[J]. Nat Immunol, 2016, 17:451-460. https://pubmed.ncbi.nlm.nih.gov/26878113/
    [35] Yu Y, Tsang JC, Wang C, et al.Single-cell RNA-seq identifies a PD-1 hi ILC progenitor and defines its development pathway[J]. Nature, 2016, 539:102-106. doi:  10.1038/nature20105
    [36] Sawa S, Cherrier M, Lochner M, et al.Lineage relationship analysis of RORγt+ innate lymphoid cells[J]. Science, 2010, 330:665-669. doi:  10.1126/science.1194597
    [37] Sanos SL, Bui VL, Mortha A, et al.RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells[J]. Nat Immunol, 2009, 10:83-91.
    [38] Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, et al.Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense[J]. Immunity, 2008, 29:958-970. doi:  10.1016/j.immuni.2008.11.001
    [39] Sawa S, Lochner M, Satoh-Takayama N, et al.RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota[J]. Nat Immunol, 2011, 12:320. https://pubmed.ncbi.nlm.nih.gov/21336274/
    [40] Sonnenberg GF, Monticelli LA, Elloso MM, et al. CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut[J]. Immunity, 2011, 34:122-134. doi:  10.1016/j.immuni.2010.12.009
    [41] Zheng Y, Valdez PA, Danilenko DM, et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens[J]. Nat Med, 2008, 14:282. doi:  10.1038/nm1720
    [42] Vaishnava S, Yamamoto M, Severson KM, et al.The antibacterial lectin RegⅢγ promotes the spatial segregation of microbiota and host in the intestine[J]. Science, 2011, 334:255-258. doi:  10.1126/science.1209791
    [43] Sonnenberg GF, Monticelli LA, Alenghat T, et al.Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria[J]. Science, 2012, 336:1321-1325. doi:  10.1126/science.1222551
    [44] Kruglov AA, Grivennikov SI, Kuprash DV, et al.Nonredundant function of soluble LTα3 produced by innate lymphoid cells in intestinal homeostasis[J]. Science, 2013, 342:1243-1246. doi:  10.1126/science.1243364
    [45] Goto Y, Obata T, Kunisawa J, et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation[J]. Science, 2014, 345:1254009. doi:  10.1126/science.1254009
    [46] Hepworth MR, Monticelli LA, Fung TC, et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria[J]. Nature, 2013, 498:113-117. doi:  10.1038/nature12240
    [47] Hepworth MR, Fung TC, Masur SH, et al. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells[J]. Science, 2015, 348:1031-1035. doi:  10.1126/science.aaa4812
    [48] Bartizal KF, Salkowski C, Balish E, et al.The effect of microbial flora, diet, and age on the tumoricidal activity of natural killer cells[J]. J Leukoc Biol, 1984, 36:739-750. doi:  10.1002/jlb.36.6.739
    [49] Ganal SC, Sanos SL, Kallfass C, et al.Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota[J]. Immunity, 2012, 37:171-186. doi:  10.1016/j.immuni.2012.05.020
    [50] Peterson LW, Artis D. Intestinal epithelial cells:regulators of barrier function and immune homeostasis[J]. Nat Rev Immunol, 2014, 14:141-153. doi:  10.1038/nri3608
    [51] Gury-BenAri M, Thaiss CA, Serafini N, et al.The Spectrum and Regulatory Landscape of Intestinal Innate Lymphoid Cells Are Shaped by the Microbiome[J]. Cell, 2016, 166:1231-1246, e13. doi:  10.1016/j.cell.2016.07.043
    [52] Khosravi A, Yáñez A, Price JG, et al.Gut microbiota promote hematopoiesis to control bacterial infection[J]. Cell Host Microbe, 2014, 15:374-381. doi:  10.1016/j.chom.2014.02.006
    [53] Balmer ML, Schürch CM, Saito Y, et al. Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling[J]. J Immunol, 2014, 193:5273-5283. doi:  10.4049/jimmunol.1400762
    [54] Schulz O, Jaensson E, Persson EK, et al.Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions[J]. J Exp Med, 2009, 206:3101-3114. doi:  10.1084/jem.20091925
    [55] Johansson-Lindbom B, Svensson M, Pabst O, et al.Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing[J]. J Exp Med, 2005, 202:1063-1073. doi:  10.1084/jem.20051100
    [56] Niess JH, Brand S, Gu X, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance[J]. Science, 2005, 307:254-258. doi:  10.1126/science.1102901
    [57] Farache J, Koren I, Milo I, et al.Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation[J]. Immunity, 2013, 38:581-595. doi:  10.1016/j.immuni.2013.01.009
    [58] Thaiss CA, Levy M, Suez J, et al. The interplay between the innate immune system and the microbiota[J]. Curr Opin Immunol, 2014, 26:41-48. doi:  10.1016/j.coi.2013.10.016
  • 加载中
计量
  • 文章访问数:  345
  • HTML全文浏览量:  39
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-13
  • 刊出日期:  2020-09-18

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!