留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光声成像分子造影剂

唐鹤文 杨萌 姜玉新

唐鹤文, 杨萌, 姜玉新. 光声成像分子造影剂[J]. 协和医学杂志, 2018, 9(4): 358-363. doi: 10.3969/j.issn.1674-9081.2018.04.013
引用本文: 唐鹤文, 杨萌, 姜玉新. 光声成像分子造影剂[J]. 协和医学杂志, 2018, 9(4): 358-363. doi: 10.3969/j.issn.1674-9081.2018.04.013
He-wen TANG, Meng YANG, Yu-xin JIANG. Molecular Contrast Agents for Photoacoustic Imaging[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(4): 358-363. doi: 10.3969/j.issn.1674-9081.2018.04.013
Citation: He-wen TANG, Meng YANG, Yu-xin JIANG. Molecular Contrast Agents for Photoacoustic Imaging[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(4): 358-363. doi: 10.3969/j.issn.1674-9081.2018.04.013

光声成像分子造影剂

doi: 10.3969/j.issn.1674-9081.2018.04.013
基金项目: 

科技部科技合作专项基金 2015DFA30440

国家自然科学青年基金 81301268

北京市科技新星计划 Z131107000413063

北京市科技新星计划交叉学科合作课题 xxjc201812

详细信息
    通讯作者:

    姜玉新 电话:010-69155491, E-mail:jiangyuxinxh@163.com

  • 中图分类号: R445.9;R445.1

Molecular Contrast Agents for Photoacoustic Imaging

More Information
  • 摘要: 光声成像是利用光声效应成像的新型影像技术, 具有光学成像高对比度和超声成像高穿透力的优势。光声成像分子包括内源性生色团和外源性造影剂, 其中外源性分子造影剂的应用, 使分子光声成像成为可能, 因而具有广阔的生物医学应用前景及重要的研究意义。本文对光声成像外源性分子造影剂的物理化学性质及合成方式进行综述, 重点介绍小分子有机染料、贵金属纳米颗粒、碳纳米材料、有机纳米多聚物、基因编码的生色团、铜铁化合物、半导体多聚物纳米颗粒等光声信号复合物及常见的配体分子, 如小分子、肽类、亲和小体、适体和抗体等, 并对未来本领域的相关研究进行展望。
  • [1] Zhou Q, Li Z, Zhou J, et al. In vivo photoacoustic tomography of EGFR overexpressed in hepatocellular carcinoma mouse xenograft[J]. Photoacoustics, 2016, 4: 43-54. doi:  10.1016/j.pacs.2016.04.001
    [2] Lozano N, Al-Ahmady ZS, Beziere NS, et al. Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxo-rubicin as a potential theranostic agent[J]. Int J Pharm, 2015, 482: 2-10. doi:  10.1016/j.ijpharm.2014.10.045
    [3] Levi J, Kothapalli SR, Bohndiek S, et al. Molecular photoacoustic imaging of follicular thyroid carcinoma[J]. Clinical Cancer Research, 2013, 19: 1494-1502. doi:  10.1158/1078-0432.CCR-12-3061
    [4] Niu Y, Song W, Zhang D, et al. Functional computer-to-plate near-infrared absorbers as highly efficient photoacoustic dyes[J]. Acta Biomater, 2016, 43: 262-268. doi:  10.1016/j.actbio.2016.07.026
    [5] Jeon M, Song WT, Huynh E, et al. Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging[J]. J Biomed Opt, 2014, 19:16005. doi:  10.1117/1.JBO.19.1.016005
    [6] Tsunoi Y, Sato S, Kawauchi S, et al. In vivo photoacoustic molecular imaging of the distribution of serum, albumin in rat burned skin[J]. Burns, 2013, 39: 1403-1408. doi:  10.1016/j.burns.2013.03.007
    [7] Park S, Kim J, Jeon M, et al. In vivo photoacoustic and fluorescence cystography using clinically relevant dual modal indocyanine green[J]. Sensors, 2014, 14: 19660-19668. doi:  10.3390/s141019660
    [8] Sano K, Ohashi M, Kanazaki K, et al. In vivo photoacoustic imaging of cancer using indocyanine green-labeled monoclonal antibody targeting the epidermal growth factor receptor[J]. Biochem Biophys Res Commun, 2015, 464: 820-825. doi:  10.1016/j.bbrc.2015.07.042
    [9] Chen J, Liang H, Lin L, et al. Gold-nanorods-based gene carriers with the capability of photoacoustic imaging and photothermal therapy[J]. ACS Appl Mater Interfaces, 2016, 8: 31558-31566. doi:  10.1021/acsami.6b10166
    [10] Han J, Zhang J, Yang M, et al. Glucose-functionalized Au nanoprisms for optoacoustic imaging and near-infrared photothermal therapy[J]. Nanoscale, 2016, 8: 492-499. doi:  10.1039/C5NR06261F
    [11] Liang S, Li C, Zhang C, et al. CD44v6 monoclonal antibody-conjugated gold nanostars for targeted photoacoustic imaging and plasmonic photothermal therapy of gastric cancer stem-like cells[J]. Theranostics, 2015, 5: 970-984. doi:  10.7150/thno.11632
    [12] Chen YS, Frey W, Kim S, et al. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy[J]. Opt Express, 2010, 18: 8867-8878. doi:  10.1364/OE.18.008867
    [13] Preston TC and Signorell R Growth and optical properties of gold nanoshells prior to the formation of a continuous metallic layer[J]. ACS Nano, 2009, 3: 3696-3706. doi:  10.1021/nn900883d
    [14] Luke GP, Bashyam A, Homan KA, et al. Silica-coated gold nanoplates as stable photoacoustic contrast agents for sentinel lymph node imaging[J]. Nanotechnology, 2013, 24: 455101. doi:  10.1088/0957-4484/24/45/455101
    [15] Weber J, Beard PC, Bohndiek SE. Contrast agents for molecular photoacoustic imaging[J]. Nat Methods, 2016, 13: 639-650. doi:  10.1038/nmeth.3929
    [16] Zackrisson S, van de Ven SM, Gambhir SS. Light in and sound out: emerging translational strategies for photoacoustic imaging[J]. Cancer Res, 2014, 74: 979-1004. doi:  10.1158/0008-5472.CAN-13-2387
    [17] Kim JW, Galanzha EI, Shashkov EV, et al. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents[J]. Nat Nanotechnol, 2009, 4: 688-694. doi:  10.1038/nnano.2009.231
    [18] de la Zerda A, Liu Z, Bodapati S, et al. Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice[J]. Nano Lett, 2010, 10: 2168-2172. doi:  10.1021/nl100890d
    [19] de la Zerda A, Bodapati S, Teed R, et al. Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice[J]. ACS Nano, 2012, 6: 4694-4701. doi:  10.1021/nn204352r
    [20] Mahmood M, Karmakar A, Fejleh A, et al. Synergistic enhancement of cancer therapy using a combination of carbon nanotubes and anti-tumor drug[J]. Nanomedicine, 2009, 4: 883-893. doi:  10.2217/nnm.09.76
    [21] Poland CA, Duffin R, Kinloch I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study[J]. Nature Nanotechnology, 2008, 3: 423-428. doi:  10.1038/nnano.2008.111
    [22] Warheit DB, Laurence BR, Reed KL, et al. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats[J]. Toxicological Sciences, 2004, 77: 117-125. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000002525161
    [23] Saito N, Haniu H, Usui Y, et al. Safe clinical use of carbon nanotubes as innovative biomaterials[J]. Chemical Reviews, 2014, 114: 6040-6079. doi:  10.1021/cr400341h
    [24] Zha ZB, Deng ZJ, Li YY, et al. Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging[J]. Nanoscale, 2013, 5: 4462-4467. doi:  10.1039/c3nr00627a
    [25] Lovell JF, Jin CS, Huynh E, et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents[J]. Nature Materials, 2011, 10: 324-332. doi:  10.1038/nmat2986
    [26] Huynh E, Jin CS, Wilson BC, et al. Aggregate enhanced trimodal porphyrin shell microbubbles for ultrasound, photoacoustic, and fluorescence imaging[J]. Bioconjugate Chemistry, 2014, 25: 796-801. doi:  10.1021/bc5000725
    [27] Cai X, Li L, Krumholz A, et al. Multi-scale molecular photoacoustic tomography of gene expression[J]. Plos One, 2012, 7:e43999. doi:  10.1371/journal.pone.0043999
    [28] Filonov GS, Krumholz A, Xia J, et al. Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe[J]. Angew Chem Int Ed Engl, 2012, 51: 1448-1451. doi:  10.1002/anie.201107026
    [29] Ku G, Zhou M, Song SL, et al. Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm[J]. Acs Nano, 2012, 6: 7489-7496. doi:  10.1021/nn302782y
    [30] Xi L, Grobmyer SR, Zhou GY, et al. Molecular photoa-coustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents[J]. J Biophotonics, 2014, 7: 401-409. doi:  10.1002/jbio.201200155
    [31] Pecher J, Mecking S. Nanoparticles of conjugated polymers[J]. Chem Rev, 2010, 110: 6260-6279. doi:  10.1021/cr100132y
    [32] Pu K, Chattopadhyay N, Rao J.Recent advances of semiconducting polymer nanoparticles in in vivo molecular imaging[J]. J Control Release, 2016, 240: 312-322. doi:  10.1016/j.jconrel.2016.01.004
    [33] Feng L, Zhu C, Yuan H, et al. Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications[J]. Chem Soc Rev, 2013, 42: 6620-6633. doi:  10.1039/c3cs60036j
    [34] Pu K, Shuhendler AJ, Jokerst JV, et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice[J]. Nat Nanotechnol, 2014, 9: 233-239. doi:  10.1038/nnano.2013.302
    [35] Pu K, Mei J, Jokerst JV, et al. Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for in vivo photoacou-stic imaging[J]. Adv Mater, 2015, 27: 5184-5190. doi:  10.1002/adma.201502285
    [36] Cheng K, Kothapalli SR, Liu H, et al. Construction and validation of nano gold tripods for molecular imaging of living subjects[J]. J Am Chem Soc, 2014, 136: 3560-3571. doi:  10.1021/ja412001e
    [37] Yang M, Cheng K, Qi S, et al. Affibody modified and radiolabeled gold-iron oxide hetero-nanostructures for tumor PET, optical and MR imaging[J]. Biomaterials, 2013, 34: 2796-2806. doi:  10.1016/j.biomaterials.2013.01.014
    [38] Yasun E, Kang H, Erdal H, et al. Cancer cell sensing and therapy using affinity tag-conjugated gold nanorods[J]. Interface Focus, 2013, 3: 20130006. doi:  10.1098/rsfs.2013.0006
  • 加载中
计量
  • 文章访问数:  472
  • HTML全文浏览量:  30
  • PDF下载量:  475
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-23
  • 刊出日期:  2018-07-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!