留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于常染色体显性多囊肾病基因芯片数据的生物信息学分析

薛澄 周晨辰 许晶 杨博 徐成钢 戴兵 刘亚伟 孙丽君 高翔 郁胜强 梅长林

薛澄, 周晨辰, 许晶, 杨博, 徐成钢, 戴兵, 刘亚伟, 孙丽君, 高翔, 郁胜强, 梅长林. 基于常染色体显性多囊肾病基因芯片数据的生物信息学分析[J]. 协和医学杂志, 2017, 8(2-3): 171-177. doi: 10.3969/j.issn.1674-9081.2017.03.016
引用本文: 薛澄, 周晨辰, 许晶, 杨博, 徐成钢, 戴兵, 刘亚伟, 孙丽君, 高翔, 郁胜强, 梅长林. 基于常染色体显性多囊肾病基因芯片数据的生物信息学分析[J]. 协和医学杂志, 2017, 8(2-3): 171-177. doi: 10.3969/j.issn.1674-9081.2017.03.016
Cheng XUE, Chen-chen ZHOU, Jing XU, Bo YANG, Cheng-gang XU, Bing DAI, Ya-wei LIU, Li-jun SUN, Xiang GAO, Sheng-qiang YU, Chang-lin MEI. Bioinformatic Analysis of Microarray Data of Autosomal Dominant Polycystic Kidney Disease[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(2-3): 171-177. doi: 10.3969/j.issn.1674-9081.2017.03.016
Citation: Cheng XUE, Chen-chen ZHOU, Jing XU, Bo YANG, Cheng-gang XU, Bing DAI, Ya-wei LIU, Li-jun SUN, Xiang GAO, Sheng-qiang YU, Chang-lin MEI. Bioinformatic Analysis of Microarray Data of Autosomal Dominant Polycystic Kidney Disease[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(2-3): 171-177. doi: 10.3969/j.issn.1674-9081.2017.03.016

基于常染色体显性多囊肾病基因芯片数据的生物信息学分析

doi: 10.3969/j.issn.1674-9081.2017.03.016
基金项目: 

国家重点研发计划 2016YFC0901500

上海地区慢性肾脏病早发现和诊疗体系建设与示范 GWIV-18

国家自然科学基金面上项目 81670612

详细信息
    通讯作者:

    梅长林   电话:021-81885411, E-mail:chlmei1954@126.com

  • 中图分类号: R322.6+1

Bioinformatic Analysis of Microarray Data of Autosomal Dominant Polycystic Kidney Disease

More Information
  • 摘要:   目的      通过GEO数据库(Gene Expression Omnibus)下载常染色体显性多囊肾病(autosomal dominant polycystic kidney disease, ADPKD)患者基因芯片数据集进行分析, 得出共同差异表达基因(differentially expressed genes, DEGs)并进行生物信息学分析, 探索ADPKD发病机制中可能的信号通路和蛋白-蛋白相互作用机制。  方法     通过GEO数据库下载两组关于ADPKD患者肾囊肿组织及对照组织的基因芯片数据集GSE7869和GSE35831, 对其进行DEGs筛选, 使用DAVID数据库和Funrich软件分析生物学信息及信号通路, 使用STRING数据库分析蛋白-蛋白相互作用机制。  结果     GSE7869共有3970个DEGs, GSE35831共有147个DEGs。两组DEGs有28个相同的上调基因和24个相同的下调基因:上调DEGs的功能集中在离子通道相关通路, 相关信号通路富集于自噬相关通路如mTOR和PI3K/Akt通路、生长因子和整合素相关通路;下调DEGs集中于能量代谢功能和相关信号通路。  结论     通过分析ADPKD得出的52个DEGs和相关富集信号通路, 可为疾病研究提供潜在的生物标记物和方向;调控ADPKD肾细胞自噬、延缓囊肿进展将可能成为新的研究焦点。
  • 图  1  GSE7869和GSE35831两组芯片的差异表达基因分析

    A:GSE7869的DEGs火山图,logFC:表达量倍数,adjP:调整P值;B:GSE35831的DEGs火山图;C:GSE7869和GSE35831共同上调DEGs的维恩图; D:GSE7869和GSE35831共同下调DEGs的维恩图

    图  2  GSE7869和GSE35831两组基因芯片DEGs的GO功能富集分析

    A、C、E分别为上调DEGs的细胞组成、分子功能和生物学进程前10富集分析结果;B、D、F分别为下调DEGs的细胞组成、分子功能和生物学进程前10富集分析结果

    图  3  GSE7869和GSE35831共同DEGs的PPI分析

    A:上调DEGs的PPI相互作用; B:下调DEGs的PPI相互作用;

    表  1  GSE7869和GSE35831两组基因芯片数据集中表达差异前10位的共同DEGs

    基因名 全称 Log FC值 染色体位置
    上调基因
       SLC7A13 溶质运载蛋白家族7 (阴离子氨基酸转运体),成员13 7.4734031 8q21.3
       PLG 血纤维蛋白溶酶原 6.887972 6q26
       CTXN3 皮质素3 6.5219779 5q23.2
       PIPOX 哌啶酸氧化酶 6.0353312 17q11.2
       SLC22A8 溶质运载蛋白家族22(有机阴离子转运蛋白),成员8 5.2740998 11q11
       FCAMR IgA,IgM高亲和力Fc受体 5.115971 1q32.1
       NAT8B N-乙酰转移酶8B 4.7572443 2p13.1
       HNF4α 肝细胞核因子4α 4.3174025 20q13.12
       TRPM3 瞬态受体电位阳离子通道亚家族M,成员3 4.2564995 9q21.12
       TFEC 转录因子EC 4.0514853 7q31.2
    下调基因
       ALDH1L2 乙醛脱氢酶家族1成员L2 -3.940836 12q23.3
       LY96 淋巴细胞抗原96 -3.6708798 8q21.11
       SBSPON 生长调节素B&血小板反应蛋白 -3.2250315 8q21.11
       C1orf21 染色体1开放阅读框架21 -3.1462389 1q25
       FAM43A 序列相似家族43,成员A -3.101968 3q29
       TTC39C 三角形四肽重复区域39C -2.9718833 18q11.2
       ATP8B2 ATP酶8B2 -2.9020667 1q21.3
       EHD2 EH区域包含体2 -2.6773335 19q13.3
       ENO2 烯醇酶2 -2.652563 12p13
       BCAT1 支链氨基酸转氨酶1 -2.6000445 12p12.1
    下载: 导出CSV

    表  2  GSE7869和GSE35831中共同DEGs富集的信号通路

    信号通路 基因数(n) 富集基因
    上调基因富集通路
       SLC介导跨膜转运 3 SLC5A11, SLC22A8, SLC34A3
       葡萄糖和其他糖类、胆汁盐和有机酸转运 2 SLC5A11, SLC22A8
       小分子跨膜转运 3 SLC5A11, SLC22A8, SLC34A3
       整合素家族细胞表面关联 3 PROC, HNF4A, PLG
       mTOR信号通路 2 HNF4α, PLG
       Akt介导的I型PI3K信号通路 2 HNF4α, PLG
       血管内皮生长因子和血管内皮生长因子受体信号通路 2 HNF4α, PLG
       肿瘤坏死因子相关凋亡诱导配体(TRAIL)信号通路 2 HNF4α, PLG
       血管内皮生长因子受体1和2介导信号通路 2 HNF4α, PLG
       干细胞生长因子受体(c-Met)介导信号通路 2 HNF4α, PLG
    下调基因富集通路
       磷脂酰肌醇聚糖通路 4 TGFB1I1, PTCH1, FGF2, BCAT1
       磷脂酰肌醇聚糖1代谢网络 3 TGFB1I1, FGF2, BCAT1
       蛋白多糖介导信号通路 3 TGFB1I1, FGF2, BCAT1
       信号转导 2 PTCH1, FGF2
       尿激酶型纤溶酶原激活因子介导信号通路 2 TGFB1I1, BCAT1
       整合素家族细胞表面关联 2 TGFB1I1, BCAT1
       磷脂酰肌醇聚糖3代谢网络 2 TGFB1I1, PTCH1
       多配体聚糖4介导信号通路 2 TGFB1I1, FGF2
       止血通路 2 EHD2, GUCY1A3
    下载: 导出CSV
  • [1] Neumann HP, Jilg C, Bacher J, et al. Epidemiology of autosomal-dominant polycystic kidney disease:an in-depth clinical study for south-western Germany[J]. Nephrol Dial Transplant, 2013, 28:1472-1487. doi:  10.1093/ndt/gfs551
    [2] Xue C, Zhou CC, Wu M, et al. The clinical manifestation and management of autosomal dominant polycystic kidney disease in China[J]. Kidney Dis (Basel), 2016, 2:111-119. doi:  10.1159/000449030
    [3] Ong AC, Devuyst O, Knebelmann B, et al. Autosomal dominant polycystic kidney disease:the changing face of clinical management[J]. Lancet, 2015, 385:1993-2002. doi:  10.1016/S0140-6736(15)60907-2
    [4] Sommerer C, Zeier M. Clinical manifestation and management of ADPKD in Western countries[J]. Kidney Dis (Basel), 2016, 2:120-127. doi:  10.1159/000449394
    [5] Ong AC, Harris PC. Molecular pathogenesis of ADPKD:the polycystin complex gets complex[J]. Kidney Int, 2005, 67:1234-1247. doi:  10.1111/j.1523-1755.2005.00201.x
    [6] Song X, Di Giovanni V, He N, et al. Systems biology of autosomal dominant polycystic kidney disease (ADPKD):computational identification of gene expression pathways and integrated regulatory networks[J]. Hum Mol Genet, 2009, 18:2328-2343. doi:  10.1093/hmg/ddp165
    [7] Husson H,Manavalan P,Akmaev VR, et al. New insights into ADPKD molecular pathways using combination of SAGE and microarray technologies[J]. Genomics, 2004, 84:497-510. doi:  10.1016/j.ygeno.2004.03.009
    [8] Pandey P,Qin S,Ho J,et al.Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease[J]. BMC Syst Biol, 2011, 5:56. doi:  10.1186/1752-0509-5-56
    [9] Menezes LF,Zhou F,Patterson AD, et al. Network analysis of a Pkd1-mouse model of autosomal dominant polycystic kidney disease identifies HNF4 alpha as a disease modifier[J]. PLoS Genet, 2012, 8:e1003053. doi:  10.1371/journal.pgen.1003053
    [10] Allen E,Piontek KB,Garrett-Mayer E, et al. Loss of polycystin-1 or polycystin-2 results in dysregulated apolipoprotein expression in murine tissues via alterations in nuclear hormone receptors[J]. Hum Mol Genet, 2006, 15:11-21. doi:  10.1093/hmg/ddi421
    [11] Hsu PP,Sabatini DM. Cancer cell metabolism:Warburg and beyond[J]. Cell, 2008, 134:703-707. doi:  10.1016/j.cell.2008.08.021
    [12] Boletta A. Emerging evidence of a link between the polycystins and the mTOR pathways[J]. Pathogenetics, 2009, 2:6. doi:  10.1186/1755-8417-2-6
    [13] Zhou JX,Fan LX,Li X, et al. TNF alpha signaling regulates cystic epithelial cell proliferation through Akt/mTOR and ERK/MAPK/Cdk2 mediated Id2 signaling[J]. PLoS One, 2015, 10:e0131043. doi:  10.1371/journal.pone.0131043
    [14] Xue C,Dai B,Mei C. Long-term treatment with mammalian target of rapamycin inhibitor does not benefit patients with autosomal dominant polycystic kidney disease:a meta-analysis[J]. Nephron Clin Pract, 2013, 124:10-16. doi:  10.1159/000354398
    [15] Zhu P,Sieben CJ,Xu X, et al. Autophagy activators suppress cystogenesis in an autosomal dominant polycystic kidney disease model[J]. Hum Mol Genet, 2017, 26:158-172. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3bc0fa82c621469cc504c7efba4690a5
    [16] Aguilar A. Polycystic kidney disease:Autophagy boost to treat ADPKD?[J]. Nat Rev Nephrol, 2017, 13:134. http://www.ncbi.nlm.nih.gov/pubmed/28090082
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  60
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-01
  • 刊出日期:  2020-10-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!