留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器人辅助系统在脑血管疾病介入治疗中的应用现状

陈霈珂 江裕华

陈霈珂, 江裕华. 机器人辅助系统在脑血管疾病介入治疗中的应用现状[J]. 协和医学杂志, 2023, 14(6): 1142-1148. doi: 10.12290/xhyxzz.2023-0374
引用本文: 陈霈珂, 江裕华. 机器人辅助系统在脑血管疾病介入治疗中的应用现状[J]. 协和医学杂志, 2023, 14(6): 1142-1148. doi: 10.12290/xhyxzz.2023-0374
CHEN Peike, JIANG Yuhua. Application of Robot-assisted System in Cerebrovascular Interventional Therapy[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1142-1148. doi: 10.12290/xhyxzz.2023-0374
Citation: CHEN Peike, JIANG Yuhua. Application of Robot-assisted System in Cerebrovascular Interventional Therapy[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1142-1148. doi: 10.12290/xhyxzz.2023-0374

机器人辅助系统在脑血管疾病介入治疗中的应用现状

doi: 10.12290/xhyxzz.2023-0374
基金项目: 

国家重点研发计划 2022YFC2409601

详细信息
    通讯作者:

    江裕华, E-mail:jxy_200321@163.com

  • 中图分类号: R651.1; TP3

Application of Robot-assisted System in Cerebrovascular Interventional Therapy

Funds: 

National Key Research and Development Program of China 2022YFC2409601

More Information
  • 摘要: 虽然血管内介入术已成为多种心脑血管疾病的主要治疗方式,但该干预策略仍存在一定局限性,如术者具有X线暴露的风险,在操作过程中需穿沉重的铅衣等。伴随人工智能技术取得的突破,临床可实现通过导管室外操作机器人辅助系统进而解决上述传统血管内介入治疗的局限性。尤其近年来,机器人辅助系统的高速发展进一步提升了血管内介入治疗操作的准确性、稳定性和安全性。本文将围绕机器人辅助系统的优势、已应用于临床脑血管病介入治疗的机器人辅助系统及其应用现状展开论述,并对该辅助系统存在的问题进行总结,同时对未来发展方向进行展望。
    作者贡献:陈霈珂负责查阅文献、撰写论文;江裕华负责指导、修订论文。
    利益冲突:所有作者均声明不存在利益冲突
  • 图  1  CorPath GRX机器人辅助系统示意图[24]

    图  2  Magellan机器人辅助系统示意图[12]

    图  3  鲁班机器人辅助系统示意图

  • [1] Venketasubramanian N, Yoon BW, Pandian J, et al. Stroke Epidemiology in South, East, and South-East Asia: A Review[J]. J Stroke, 2017, 19: 286-294. doi:  10.5853/jos.2017.00234
    [2] Ning S, Chautems C, Kim Y, et al. Robotic Interventional Neuroradiology: Progress, Challenges, and Future Prospects[J]. Semin Neurol, 2023, 43: 432-438. doi:  10.1055/s-0043-1771298
    [3] Rafii-Tari H, Payne CJ, Yang GZ. Current and emerging robot-assisted endovascular catheterization technologies: a review[J]. Ann Biomed Eng, 2014, 42: 697-715. doi:  10.1007/s10439-013-0946-8
    [4] Etminan N, Rinkel GJ. Unruptured intracranial aneurysms: development, rupture and preventive management[J]. Nat Rev Neurol, 2016, 12: 699-713. doi:  10.1038/nrneurol.2016.150
    [5] UCAS Japan Investigators, Morita A, Kirino T, et al. The natural course of unruptured cerebral aneurysms in a Japanese cohort[J]. N Engl J Med, 2012, 366: 2474-2482. doi:  10.1056/NEJMoa1113260
    [6] Bonneville F, Sourour N, Biondi A. Intracranial aneurysms: an overview[J]. Neuroimaging Clin N Am, 2006, 16: 371-ⅶ. doi:  10.1016/j.nic.2006.05.001
    [7] Molyneux A, Kerr R, Stratton I, et al. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial[J]. Lancet, 2002, 360: 1267-1274. doi:  10.1016/S0140-6736(02)11314-6
    [8] Raymond J, Guilbert F, Weill A, et al. Long-term angiographic recurrences after selective endovascular treatment of aneurysms with detachable coils[J]. Stroke, 2003, 34: 1398-1403. doi:  10.1161/01.STR.0000073841.88563.E9
    [9] Ederle J, Bonati LH, Dobson J, et al. Endovascular treatment with angioplasty or stenting versus endarterectomy in patients with carotid artery stenosis in the Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVATAS): long-term follow-up of a randomised trial[J]. Lancet Neurol, 2009, 8: 898-907. doi:  10.1016/S1474-4422(09)70228-5
    [10] Andreassi MG, Piccaluga E, Guagliumi G, et al. Occupational Health Risks in Cardiac Catheterization Laboratory Workers[J]. Circ Cardiovasc Interv, 2016, 9: e003273. doi:  10.1161/CIRCINTERVENTIONS.115.003273
    [11] Kadooka K, Hagenbuch N, Anagnostakou V, et al. Safety and efficacy of balloon angioplasty in symptomatic intracranial stenosis: A systematic review and meta-analysis[J]. J Neuroradiol, 2020, 47: 27-32. doi:  10.1016/j.neurad.2019.02.007
    [12] Vuong SM, Carroll CP, Tackla RD, et al. Application of emerging technologies to improve access to ischemic stroke care[J]. Neurosurg Focus, 2017, 42: E8.
    [13] Manners J, Steinberg A, Shutter L. Early management of acute cerebrovascular accident[J]. Curr Opin Crit Care, 201723: 556-560. doi:  10.1097/MCC.0000000000000462
    [14] 韩晓光, 张琦, 何达. 远程医疗机器人手术研究进展[J]. 邵阳学院学报(自然科学版), 2022, 19: 103-107. doi:  10.3969/j.issn.1672-7010.2022.06.014
    [15] Beaman C, Holodinsky JK, Goyal M, et al. Modeling optimal patient transport in a stroke network capable of remote telerobotic endovascular therapy[J]. Interv Neuroradiol, 2022, 15910199221140177.
    [16] Patel TM, Shah SC, Pancholy SB. Long Distance Tele-Robotic-Assisted Percutaneous Coronary Intervention: A Report of First-in-Human Experience[J]. EClinicalMedicine, 2019, 14: 53-58. doi:  10.1016/j.eclinm.2019.07.017
    [17] Zheng J, Wang Y, Zhang J, et al. 5G ultra-remote robot-assisted laparoscopic surgery in China[J]. Surg Endosc, 2020, 34: 5172-5180. doi:  10.1007/s00464-020-07823-x
    [18] Ball T, González-Martínez J, Zemmar A, et al. Robotic Applications in Cranial Neurosurgery: Current and Future[J]. Oper Neurosurg (Hagerstown), 2021, 21: 371-379. doi:  10.1093/ons/opab217
    [19] 王鉴, 高翔, 张峰, 等. 血管介入机器人辅助介入治疗研究现状[J]. 介入放射学杂志, 2023, 32: 619-623. doi:  10.3969/j.issn.1008-794X.2023.06.022
    [20] Beaman C, Gautam A, Peterson C, et al. Robotic Diagnostic Cerebral Angiography: A Multicenter Experience of 113 Patients[J]. J Neurointerv Surg, 2023. doi:  10.1136/jnis-2023-020448.
    [21] Maor E, Eleid MF, Gulati R, et al. Current and Future Use of Robotic Devices to Perform Percutaneous Coronary Interven-tions: A Review[J]. J Am Heart Assoc, 2017, 6: e006239. doi:  10.1161/JAHA.117.006239
    [22] Caputo R, Lesser A, Simons A. CRT-313 feasibility of robotic percutaneous renal artery revascularization[J]. JACC-Cardiovasc Int, 2015, 8: S35-S36.
    [23] Britz GW, Panesar SS, Falb P, et al. Neuroen-dovascular-specific engineering modifications to the CorPath GRX Robotic System[J]. J Neurosurg, 2019, 133: 1830-1836.
    [24] Chivot C, Bouzerar R, Peltier J, et al. Robotically assisted deployment of flow diverter stents for the treatment of cerebral and cervical aneurysms[J]. J Neurointerv Surg, 2023. doi:  10.1136/jnis-2022-019968.
    [25] Püschel A, Schafmayer C, Groβ J. Robot-assisted techni-ques in vascular and endovascular surgery[J]. Langen-becks Arch Surg, 2022, 407: 1789-1795. doi:  10.1007/s00423-022-02465-0
    [26] Beaman CB, Kaneko N, Meyers PM, et al. A Review of Robotic Interventional Neuroradiology[J]. AJNR Am J Neuroradiol, 2021, 42: 808-814. doi:  10.3174/ajnr.A6976
    [27] Lumsden AB, Bismuth J. Current status of endovascular catheter robotics[J]. J Cardiovasc Surg (Torino), 2018, 59: 310-316.
    [28] Jones B, Riga C, Bicknell C, et al. Robot-Assisted Carotid Artery Stenting: A Safety and Feasibility Study[J]. Cardiovasc Intervent Radiol, 2021, 44: 795-800. doi:  10.1007/s00270-020-02759-0
    [29] Lu WS, Xu WY, Pan F, et al. Clinical application of a vascular interventional robot in cerebral angiography[J]. Int J Med Robot, 2016, 12: 132-136. doi:  10.1002/rcs.1650
    [30] Jiang Y, Liu K, Li Y. Initial Clinical Trial of Robot of Endovascular Treatment with Force Feedback and Cooperating of Catheter and Guidewire[J]. Appl Bionics Biomech, 2018, 2018: 9735979.
    [31] Sajja KC, Sweid A, Al Saiegh F, et al. Endovascular robotic: feasibility and proof of principle for diagnostic cerebral angiography and carotid artery stenting[J]. J Neurointerv Surg, 2020, 12: 345-349. doi:  10.1136/neurintsurg-2019-015763
    [32] Yang C, Guo S, Bao X, et al. A vascular interventional surgical robot based on surgeon's operating skills[J]. Med Biol Eng Comput, 2019, 57: 1999-2010. doi:  10.1007/s11517-019-02016-8
    [33] Cancelliere NM, Lynch J, Nicholson P, et al. Robotic-assisted intracranial aneurysm treatment: 1 year follow-up imaging and clinical outcomes[J]. J Neurointerv Surg, 2022, 14: 1229-1233. doi:  10.1136/neurintsurg-2021-017865
    [34] Mendes Pereira V, Cancelliere NM, Nicholson P, et al. First-in-human, robotic-assisted neuroendovascular intervention[J]. J Neurointerv Surg, 2020, 12: 338-340. doi:  10.1136/neurintsurg-2019-015671.rep
    [35] George JC, Tabaza L, Janzer S. Robotic-assisted balloon angioplasty and stent placement with distal embolic protection device for severe carotid artery stenosis in a high-risk surgical patient[J]. Catheter Cardiovasc Interv, 2020, 96: 410-412. doi:  10.1002/ccd.28939
    [36] Weinberg JH, Sweid A, Sajja K, et al. Comparison of robotic-assisted carotid stenting and manual carotid stenting through the transradial approach[J]. J Neurosurg, 2020, 135: 21-28. doi:  10.3171/2020.5.JNS201421
    [37] Legeza PT, Lettenberger AB, Murali B, et al. Evaluation of Robotic-Assisted Carotid Artery Stenting in a Virtual Model Using Motion-Based Performance Metrics[J]. J Endovasc Ther, 2022. doi:  10.1177/15266028221125592.
    [38] Mendes Pereira V, Cancelliere NM, Nicholson P, et al. First-in-human, robotic-assisted neuroendovascular intervention[J]. J Neurointerv Surg, 2020, 12: 338-340. doi:  10.1136/neurintsurg-2019-015671.rep
    [39] 童静, 储呈晨, 李斌. 血管介入手术机器人及其力反馈技术研究进展[J]. 中国普通外科杂志, 2023, 32: 915-922. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPWZ202306010.htm
    [40] Crinnion W, Jackson B, Sood A, et al. Robotics in neurointerventional surgery: a systematic review of the literature[J]. J Neurointerv Surg, 2022, 14: 539-545.
    [41] 韩晓光, 朱小龙, 姜宇桢, 等. 人工智能与机器人辅助医学发展研究[J/OL]. 中国工程科学, 2023. doi: 10.15302/J-SSCAE-2023.07.031.
  • 加载中
图(3)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  23
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-11
  • 录用日期:  2023-10-30
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!