留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2022年度我国脑胶质瘤领域研究进展

陈雯琳 王月坤 刘千舒 叶立果 郑智尧 张鑫 龚乐 曹雅宁 宋怡萱 郭晓鹏 王裕 马文斌

陈雯琳, 王月坤, 刘千舒, 叶立果, 郑智尧, 张鑫, 龚乐, 曹雅宁, 宋怡萱, 郭晓鹏, 王裕, 马文斌. 2022年度我国脑胶质瘤领域研究进展[J]. 协和医学杂志, 2023, 14(5): 983-990. doi: 10.12290/xhyxzz.2023-0321
引用本文: 陈雯琳, 王月坤, 刘千舒, 叶立果, 郑智尧, 张鑫, 龚乐, 曹雅宁, 宋怡萱, 郭晓鹏, 王裕, 马文斌. 2022年度我国脑胶质瘤领域研究进展[J]. 协和医学杂志, 2023, 14(5): 983-990. doi: 10.12290/xhyxzz.2023-0321
CHEN Wenlin, WANG Yuekun, LIU Qianshu, YE Liguo, ZHENG Zhiyao, ZHANG Xin, GONG Le, CAO Yaning, SONG Yixuan, GUO Xiaopeng, WANG Yu, MA Wenbin. Annual Research Progress of Glioma in China in 2022[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 983-990. doi: 10.12290/xhyxzz.2023-0321
Citation: CHEN Wenlin, WANG Yuekun, LIU Qianshu, YE Liguo, ZHENG Zhiyao, ZHANG Xin, GONG Le, CAO Yaning, SONG Yixuan, GUO Xiaopeng, WANG Yu, MA Wenbin. Annual Research Progress of Glioma in China in 2022[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 983-990. doi: 10.12290/xhyxzz.2023-0321

2022年度我国脑胶质瘤领域研究进展

doi: 10.12290/xhyxzz.2023-0321
基金项目: 

中央高水平医院临床科研专项 2022-PUMCH-A-019

中央高水平医院临床科研专项 2022-PUMCH-B-113

北京市自然科学基金 7202150

北京市自然科学基金 19JCZDJC64200(Z)

清华大学-北京协和医院合作课题 2019ZLH101

详细信息
    通讯作者:

    马文斌,E-mail:mawb2001@hotmail.com

  • 中图分类号: R739.41

Annual Research Progress of Glioma in China in 2022

Funds: 

National High Level Hospital Clinical Research Funding 2022-PUMCH-A-019

National High Level Hospital Clinical Research Funding 2022-PUMCH-B-113

Beijing Municipal Natural Science Foundation 7202150

Beijing Municipal Natural Science Foundation 19JCZDJC64200(Z)

Tsinghua University-Peking Union Medical College Hospital Initiative Scientific Research Program 2019ZLH101

More Information
  • 摘要: 脑胶质瘤是成人中枢神经系统发病率最高的原发恶性肿瘤, 尽管目前已有包括手术切除、放疗及化疗等多种治疗手段, 患者生存期仍较短, 严重威胁患者的生命健康。近年来, 随着对胶质瘤基础和临床特性研究的不断深入, 脑胶质瘤领域也得到进一步发展。本文就2022年度我国脑胶质瘤领域中有关胶质瘤的分类、发生机制、免疫微环境、影像学研究、临床研究(手术治疗、放疗、替莫唑胺化疗、靶向治疗及免疫治疗)、新型药物递送系统及大数据应用技术等方面研究进展进行综述, 以期为脑胶质瘤的临床诊疗提供参考。
    作者贡献:陈雯琳、王月坤、刘千舒、叶立果、郑智尧、张鑫、龚乐、曹雅宁、宋怡萱负责资料收集和论文撰写;陈雯琳、郭晓鹏负责论文修订;王裕、马文斌负责论文指导及修订。
    利益冲突:所有作者均声明不存在利益冲突
  • [1] Ostrom QT, Price M, Neff C, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015—2019[J]. Neuro Oncol, 2022, 24: v1-v95. doi:  10.1093/neuonc/noac202
    [2] Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J]. N Engl J Med, 2005, 352: 987-996. doi:  10.1056/NEJMoa043330
    [3] van Solinge TS, Nieland L, Chiocca EA, et al. Advances in local therapy for glioblastoma-taking the fight to the tumour[J]. Nat Rev Neurol, 2022, 18: 221-236. doi:  10.1038/s41582-022-00621-0
    [4] Jiang T, Nam DH, Ram Z, et al. Clinical practice guidelines for the management of adult diffuse gliomas[J]. Cancer Letters, 2021, 499: 60-72. doi:  10.1016/j.canlet.2020.10.050
    [5] Stupp R, Taillibert S, Kanner A, et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial[J]. Jama, 2017, 318: 2306-2316. doi:  10.1001/jama.2017.18718
    [6] Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23: 1231-1251. doi:  10.1093/neuonc/noab106
    [7] Zhao B, Xia Y, Yang F, et al. Molecular landscape of IDH-mutant astrocytoma and oligodendroglioma grade 2 indicate tumor purity as an underlying genomic factor[J]. Mol Med, 2022, 28: 34.
    [8] Hu W, Duan H, Zhong S, et al. High frequency of PDGFRA and MUC family gene mutations in diffuse hemispheric glioma, H3 G34-mutant: a glimmer of hope?[J]. J Transl Med, 2022, 20: 64. doi:  10.1186/s12967-022-03258-1
    [9] Zhong S, Ren JX, Yu ZP, et al. Predicting glioblastoma molecular subtypes and prognosis with a multimodal model integrating convolutional neural network, radiomics, and semantics[J]. J Neurosurg, 2022, 2: 1-10.
    [10] Liu XP, Jin X, Seyed Ahmadian S, et al. Clinical significance and molecular annotation of cellular morphometric subtypes in lower-grade gliomas discovered by machine learning[J]. Neuro Oncol, 2023, 25: 68-81. doi:  10.1093/neuonc/noac154
    [11] Onishi M, Ichikawa T, Kurozumi K, et al. Angiogenesis and invasion in glioma[J]. Brain Tumor Pathol, 2011, 28: 13-24. doi:  10.1007/s10014-010-0007-z
    [12] Chen L, Xie X, Wang T, et al. ARL13B promotes angiogenesis and glioma growth by activating VEGFA-VEGFR2 signaling[J]. Neuro Oncol, 2023, 25: 871-885. doi:  10.1093/neuonc/noac245
    [13] Peng P, Zhu H, Liu D, et al. TGFBI secreted by tumor-associated macrophages promotes glioblastoma stem cell-driven tumor growth via integrin αvβ5-Src-Stat3 signaling[J]. Theranostics, 2022, 12: 4221-4236. doi:  10.7150/thno.69605
    [14] Lin K, Gao W, Chen N, et al. Chronic Inflammation Pathway NF-κB Cooperates with Epigenetic Reprogramming to Drive the Malignant Progression of Glioblastoma[J]. Int J Biol Sci, 2022, 18: 5770-5786. doi:  10.7150/ijbs.73749
    [15] Xie J, Ma G, Zhou L, et al. Identification of a STIM1 Splicing Variant that Promotes Glioblastoma Growth[J]. Adv Sci (Weinh), 2022, 9: e2103940. doi:  10.1002/advs.202103940
    [16] Zhang S, Zhao S, Qi Y, et al. SPI1-induced downregulation of FTO promotes GBM progression by regulating pri-miR-10a processing in an m6A-dependent manner[J]. Mol Ther Nucleic Acids, 2022, 27: 699-717. doi:  10.1016/j.omtn.2021.12.035
    [17] Yuan Y, Wang LH, Zhao XX, et al. The E3 ubiquitin ligase HUWE1 acts through the N-Myc-DLL1-NOTCH1 signaling axis to suppress glioblastoma progression[J]. Cancer Commun (Lond), 2022, 42: 868-886. doi:  10.1002/cac2.12334
    [18] Wang Y, Wang K, Fu J, et al. FRK inhibits glioblastoma progression via phosphorylating YAP and inducing its ubiquitylation and degradation by Siah1[J]. Neuro Oncol, 2022, 24: 2107-2120. doi:  10.1093/neuonc/noac156
    [19] Jiang Y, Zhao J, Li R, et al. CircLRFN5 inhibits the progression of glioblastoma via PRRX2/GCH1 mediated ferroptosis[J]. J Exp Clin Cancer Res, 2022, 41: 307. doi:  10.1186/s13046-022-02518-8
    [20] He D, Xin T, Pang B, et al. A novel lncRNA MDHDH suppresses glioblastoma multiforme by acting as a scaffold for MDH2 and PSMA1 to regulate NAD+ metabolism and autophagy[J]. J Exp Clin Cancer Res, 2022, 41: 349. doi:  10.1186/s13046-022-02543-7
    [21] Chen S, Zhang Z, Zhang B, et al. CircCDK14 Promotes Tumor Progression and Resists Ferroptosis in Glioma by Regulating PDGFRA[J]. Int J Biol Sci, 2022, 18: 841-857. doi:  10.7150/ijbs.66114
    [22] Song J, Zheng J, Liu X, et al. A novel protein encoded by ZCRB1-induced circHEATR5B suppresses aerobic glycolysis of GBM through phosphorylation of JMJD5[J]. J Exp Clin Cancer Res, 2022, 41: 171. doi:  10.1186/s13046-022-02374-6
    [23] Xia H, Liu B, Shen N, et al. circRNA-0002109 promotes glioma malignant progression via modulating the miR-129-5P/EMP2 axis[J]. Mol Ther Nucleic Acids, 2022, 27: 1-15. doi:  10.1016/j.omtn.2021.11.011
    [24] Xiang Z, Lv Q, Zhang Y, et al. Long non-coding RNA DDX11-AS1 promotes the proliferation and migration of glioma cells by combining with HNRNPC[J]. Mol Ther Nucleic Acids, 2022, 28: 601-612. doi:  10.1016/j.omtn.2022.04.016
    [25] Lv T, Jin Y, Miao Y, et al. LncRNA PVT1 promotes tumorigenesis of glioblastoma by recruiting COPS5 to deubiqui-tinate and stabilize TRIM24[J]. Mol Ther Nucleic Acids, 2022, 27: 109-121. doi:  10.1016/j.omtn.2021.11.012
    [26] Wang F, Zhao F, Zhang L, et al. CDC6 is a prognostic biomarker and correlated with immune infiltrates in glioma[J]. Mol Cancer, 2022, 21: 153. doi:  10.1186/s12943-022-01623-8
    [27] Pan Z, Zhao R, Li B, et al. EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3[J]. Mol Cancer, 2022, 21: 16.
    [28] Ni X, Wu W, Sun X, et al. Interrogating glioma-M2 macrophage interactions identifies Gal-9/Tim-3 as a viable target against PTEN-null glioblastoma[J]. Sci Adv, 2022, 8: eabl5165. doi:  10.1126/sciadv.abl5165
    [29] Chen P, Wang W, Liu R, et al. Olfactory sensory experi-ence regulates gliomagenesis via neuronal IGF1[J]. Nature, 2022, 606: 550-556. doi:  10.1038/s41586-022-04719-9
    [30] Jia Y, Xu S, Han G, et al. Transmembrane water-efflux rate measured by magnetic resonance imaging as a biomarker of the expression of aquaporin-4 in gliomas[J]. Nat Biomed Eng, 2023, 7: 236-252.
    [31] Cai S, Shi Z, Zhou S, et al. Cerebrovascular Dysregulation in Patients with Glioma Assessed with Time-shifted BOLD fMRI[J]. Radiology, 2022, 304: 155-163. doi:  10.1148/radiol.212192
    [32] Li G, Li L, Li Y, et al. An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas[J]. Brain, 2022, 145: 1151-1161. doi:  10.1093/brain/awab340
    [33] Cheng J, Liu J, Kuang H, et al. A Fully Automated Multimodal MRI-Based Multi-Task Learning for Glioma Segmentation and IDH Genotyping[J]. IEEE Trans Med Imaging, 2022, 41: 1520-1532. doi:  10.1109/TMI.2022.3142321
    [34] Huang P, Li D, Jiao Z, et al. Common feature learning for brain tumor MRI synthesis by context-aware generative adversarial network[J]. Med Image Anal, 2022, 79: 102472. doi:  10.1016/j.media.2022.102472
    [35] Qin R, Li S, Qiu Y, et al. Carbonized paramagnetic complexes of Mn (Ⅱ) as contrast agents for precise magnetic resonance imaging of sub-millimeter-sized orthotopic tumors[J]. Nat Commun, 2022, 13: 1938. doi:  10.1038/s41467-022-29586-w
    [36] Kong J, Zou R, Law GL, et al. Biomimetic multifunctional persistent luminescence nanoprobes for long-term near-infrared imaging and therapy of cerebral and cerebellar gliomas[J]. Sci Adv, 2022, 8: eabm7077. doi:  10.1126/sciadv.abm7077
    [37] Xiao A, Shen B, Shi X, et al. Intraoperative Glioma Grading Using Neural Architecture Search and Multi-Modal Imaging[J]. IEEE Trans Med Imaging, 2022, 41: 2570-2581. doi:  10.1109/TMI.2022.3166129
    [38] Gao D, Li Y, Wu Y, et al. Albumin-Consolidated AIEgens for Boosting Glioma and Cerebrovascular NIR-Ⅱ Fluores-cence Imaging[J]. ACS Appl Mater Interfaces, 2023, 15: 3-13. doi:  10.1021/acsami.1c22700
    [39] De Marco R, Pesaresi A, Bianconi A, et al. A Systematic Review of Amino Acid PET Imaging in Adult-Type High-Grade Glioma Surgery: A Neurosurgeon's Perspective[J]. Cancers (Basel), 2022, 15: 90. doi:  10.3390/cancers15010090
    [40] Lipkova J, Chen RJ, Chen B, et al. Artificial intelligence for multimodal data integration in oncology[J]. Cancer Cell, 2022, 40: 1095-1110. doi:  10.1016/j.ccell.2022.09.012
    [41] Zhang H, Ille S, Sogerer L, et al. Elucidating the structural-functional connectome of language in glioma-induced aphasia using nTMS and DTI[J]. Hum Brain Mapp, 2022, 43: 1836-1849. doi:  10.1002/hbm.25757
    [42] Cirillo S, Battistella G, Castellano A, et al. Comparison between inferior frontal gyrus intrinsic connectivity network and verb-generation task fMRI network for presurgical language mapping in healthy controls and in glioma patients[J]. Brain Imaging Behav, 2022, 16: 2569-2585. doi:  10.1007/s11682-022-00712-y
    [43] Tang T, Chang B, Zhang M, et al. Nanoprobe-mediated precise imaging and therapy of glioma[J]. Nanoscale Horiz, 2021, 6: 634-650. doi:  10.1039/D1NH00182E
    [44] Jin Z, Yue Q, Duan W, et al. Intelligent SERS Navigation System Guiding Brain Tumor Surgery by Intraoperatively Delineating the Metabolic Acidosis[J]. Adv Sci (Weinh), 2022, 9: e2104935. doi:  10.1002/advs.202104935
    [45] Wang Z, Zhang M, Chi S, et al. Brain Tumor Cell Membrane-Coated Lanthanide-Doped Nanoparticles for NIR-Ⅱb Luminescence Imaging and Surgical Navigation of Glioma[J]. Adv Healthc Mater, 2022, 11: e2200521. doi:  10.1002/adhm.202200521
    [46] Wu S, Cao R, Tao B, et al. Pyruvate Facilitates FACT-Mediated γH2AX Loading to Chromatin and Promotes the Radiation Resistance of Glioblastoma[J]. Adv Sci (Weinh), 2022, 9: e2104055. doi:  10.1002/advs.202104055
    [47] Yang Z, Hu N, Wang W, et al. Loss of FBXW7 Correlates with Increased IDH1 Expression in Glioma and Enhances IDH1-Mutant Cancer Cell Sensitivity to Radiation[J]. Cancer Res, 2022, 82: 497-509.
    [48] Gu J, Mu N, Jia B, et al. Targeting radiation-tolerant persister cells as a strategy for inhibiting radioresistance and recurrence in glioblastoma[J]. Neuro Oncol, 2022, 24: 1056-1070. doi:  10.1093/neuonc/noab288
    [49] He Y, Dong XH, Zhu Q, et al. Ultrasound-triggered microbubble destruction enhances the radiosensitivity of glioblastoma by inhibiting PGRMC1-mediated autophagy in vitro and in vivo[J]. Mil Med Res, 2022, 9: 9.
    [50] Li Y, Wang T, Wan Q, et al. TRAF4 Maintains Deubiquitination of Caveolin-1 to Drive Glioblastoma Stemness and Temozolomide Resistance[J]. Cancer Res, 2022, 82: 3573-3587.
    [51] Gao Z, Xu J, Fan Y, et al. PDIA3P1 promotes Temozolomide resistance in glioblastoma by inhibiting C/EBPβ degradation to facilitate proneural-to-mesenchymal transition[J]. J Exp Clin Cancer Res, 2022, 41: 223. doi:  10.1186/s13046-022-02431-0
    [52] Li J, Song C, Gu J, et al. RBBP4 regulates the expression of the Mre11-Rad50-NBS1 (MRN) complex and promotes DNA double-strand break repair to mediate glioblastoma chemoradiotherapy resistance[J]. Cancer Lett, 2023, 557: 216078. doi:  10.1016/j.canlet.2023.216078
    [53] Chen L, Zhao X, Liu Y, et al. Comprehensive analysis of HHV-6 and HHV-7-related gene signature in prognosis and response to temozolomide of glioma[J]. J Med Virol, 2023, 95: e28285. doi:  10.1002/jmv.28285
    [54] Tong F, Zhao JX, Fang ZY, et al. MUC1 promotes glioblastoma progression and TMZ resistance by stabilizing EGFRvⅢ[J]. Pharmacol Res, 2023, 187: 106606. doi:  10.1016/j.phrs.2022.106606
    [55] Rehman FU, Liu Y, Yang Q, et al. Heme Oxygenase-1 targeting exosomes for temozolomide resistant glioblastoma synergistic therapy[J]. J Control Release, 2022, 345: 696-708. doi:  10.1016/j.jconrel.2022.03.036
    [56] Muhammad P, Hanif S, Li J, et al. Carbon dots supported single Fe atom nanozyme for drug-resistant glioblastoma therapy by activating autophagy-lysosome pathway[J]. Nano Today, 2022, 45: 101530. . doi:  10.1016/j.nantod.2022.101530
    [57] Gai QJ, Fu Z, He J, et al. EPHA2 mediates PDGFA activity and functions together with PDGFRA as prognostic marker and therapeutic target in glioblastoma[J]. Signal Transduct Target Ther, 2022, 7: 33. doi:  10.1038/s41392-021-00855-2
    [58] Ji M, Wang D, Lin S, et al. A novel PI3K inhibitor XH30 suppresses orthotopic glioblastoma and brain metastasis in mice models[J]. Acta Pharm Sin B, 2022, 12: 774-786. doi:  10.1016/j.apsb.2021.05.019
    [59] Zhao P, Qu J, Wu A, et al. Anti-alcoholism drug disulfiram for targeting glioma energy metabolism using BBB-penetrat-ing delivery of fixed-dose combination[J]. Nano Today, 2022, 44: 101448. doi:  10.1016/j.nantod.2022.101448
    [60] Shi R, Pan P, Lv R, et al. High-throughput glycolytic inhibitor discovery targeting glioblastoma by graphite dots-assisted LDI mass spectrometry[J]. Sci Adv, 2022, 8: eabl4923. doi:  10.1126/sciadv.abl4923
    [61] Liu T, Zhu C, Chen X, et al. Ferroptosis, as the most enriched programmed cell death process in glioma, induces immunosuppression and immunotherapy resistance[J]. Neuro Oncol, 2022, 24: 1113-1125. doi:  10.1093/neuonc/noac033
    [62] Yin Y, Rodriguez JL, Li N, et al. Locally secreted BiTEs complement CAR T cells by enhancing killing of antigen heterogeneous solid tumors[J]. Mol Ther, 2022, 30: 2537-2553. doi:  10.1016/j.ymthe.2022.05.011
    [63] Cui J, Xu Y, Tu H, et al. Gather wisdom to overcome barriers: Well-designed nano-drug delivery systems for treating gliomas[J]. Acta Pharm Sin B, 2022, 12: 1100-1125. doi:  10.1016/j.apsb.2021.08.013
    [64] Li T, Li J, Chen Z, et al. Glioma diagnosis and therapy: Current challenges and nanomaterial-based solutions[J]. J Control Release, 2022, 352: 338-370. doi:  10.1016/j.jconrel.2022.09.065
    [65] Akakuru OU, Zhang Z, Iqbal MZ, et al. Chemotherapeutic nanomaterials in tumor boundary delineation: Prospects for effective tumor treatment[J]. Acta Pharm Sin B, 2022, 12: 2640-2657. doi:  10.1016/j.apsb.2022.02.016
    [66] Yin N, Wang Y, Cao Y, et al. A biodegradable nanocapsule for through-skull NIR-Ⅱ fluorescence imaging/magnetic resonance imaging and selectively enhanced radio-chemotherapy for orthotopic glioma[J]. Nano Today, 2022, 46: 101619. doi:  10.1016/j.nantod.2022.101619
    [67] Li Y, Pan Y, Wang Y, et al. A D-peptide ligand of neuropeptide Y receptor Y1 serves as nanocarrier traversing of the blood brain barrier and targets glioma[J]. Nano Today, 2022, 44: 101465. doi:  10.1016/j.nantod.2022.101465
    [68] Wang H, Chao Y, Zhao H, et al. Smart Nanomedicine to Enable Crossing Blood-Brain Barrier Delivery of Checkpoint Blockade Antibody for Immunotherapy of Glioma[J]. ACS Nano, 2022, 16: 664-674. doi:  10.1021/acsnano.1c08120
    [69] Zhang Q, Jin S, Zou X. scAB detects multiresolution cell states with clinical significance by integrating single-cell genomics and bulk sequencing data[J]. Nucleic Acids Res, 2022, 50: 12112-12130. doi:  10.1093/nar/gkac1109
    [70] Zhu S, Kong W, Zhu J, et al. The genetic algorithm-aided three-stage ensemble learning method identified a robust survival risk score in patients with glioma[J]. Brief Bioinform, 2022, 23: bbac344. doi:  10.1093/bib/bbac344
    [71] Wu F, Yin YY, Fan WH, et al. Immunological profiles of human oligodendrogliomas define two distinct molecular subtypes[J]. EBioMedicine, 2023, 87: 104410. doi:  10.1016/j.ebiom.2022.104410
  • 加载中
计量
  • 文章访问数:  776
  • HTML全文浏览量:  91
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-05
  • 录用日期:  2023-07-19
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回

    【通知】尊敬的读者、作者及编者:为做节日期间网络数据安全保障工作,本网站自2024.5.1日至5.5日期间仅22:00-6:00开放,其他时段访问受限,给您带来不便敬请谅解。编辑部恭祝您节日愉快!