留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

感染在自身免疫性疾病中的作用机制

程琳琳 李詹 李永哲

程琳琳, 李詹, 李永哲. 感染在自身免疫性疾病中的作用机制[J]. 协和医学杂志, 2023, 14(5): 925-931. doi: 10.12290/xhyxzz.2023-0268
引用本文: 程琳琳, 李詹, 李永哲. 感染在自身免疫性疾病中的作用机制[J]. 协和医学杂志, 2023, 14(5): 925-931. doi: 10.12290/xhyxzz.2023-0268
CHENG Linlin, LI Zhan, LI Yongzhe. Research Progress on the Mechanism of Infection in Autoimmune Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 925-931. doi: 10.12290/xhyxzz.2023-0268
Citation: CHENG Linlin, LI Zhan, LI Yongzhe. Research Progress on the Mechanism of Infection in Autoimmune Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 925-931. doi: 10.12290/xhyxzz.2023-0268

感染在自身免疫性疾病中的作用机制

doi: 10.12290/xhyxzz.2023-0268
基金项目: 

国家重点研发计划 2018YFE0207300

中央高水平医院临床科研专项 2022-PUMCH-B-124

北京市自然科学基金 M23008

北京市自然科学基金 7234383

中国博士后科学基金 2023T160060

详细信息
    通讯作者:

    李永哲, E-mail:yongzhelipumch@126.com

    程琳琳、李詹对本文同等贡献

    程琳琳、李詹对本文同等贡献

  • 中图分类号: R446.5;R51;R593

Research Progress on the Mechanism of Infection in Autoimmune Diseases

Funds: 

National Key Research and Development Program of China 2018YFE0207300

National High-level Hospital Clinical Research Funding 2022-PUMCH-B-124

Beijing Municipal Natural Science Foundation Project M23008

Beijing Municipal Natural Science Foundation Project 7234383

China Postdoctoral Science Foundation 2023T160060

More Information
  • 摘要: 自身免疫性疾病(autoimmune disease, AID)发病机制复杂。近年来,越来越多的证据表明,感染在驱动具有潜在遗传背景的AID的发生和进展中起关键作用,这为临床重新审视AID的诱因及可能机制提供了更广阔和新颖的视角。本文通过总结病原微生物与自身免疫/AID相关性的最新研究进展,旨在从病原学角度探讨常见AID的病因和发病机制,以期通过整合现有证据,加深对AID发病机制的认识,为疾病预防和临床诊疗提供有价值的见解。
    作者贡献:程琳琳、李詹负责查阅文献、撰写及修订论文;李永哲负责修订论文、终审及校对。
    利益冲突:所有作者均声明不存在利益冲突
  • 表  1  自身免疫性疾病及相关病原微生物

    疾病分类 相关病原微生物
    器官特异性自身免疫性疾病
      1型糖尿病[3] 肠道病毒/菌群,巨细胞病毒
      原发性胆汁性胆管炎[4] 大肠埃希菌,幽门螺杆菌
      多发性硬化症[5] EB病毒,巨细胞病毒,人疱疹病毒6型,水痘-带状疱疹病毒
    系统性自身免疫性疾病
      系统性红斑狼疮[6] EB病毒,水痘带状疱疹病毒,人乳头状瘤病毒,轮状病毒,肠道病毒,人内源性逆转录病毒,登革热病毒,肠道菌群,弓形虫
      类风湿关节炎[7] EB病毒,巨细胞病毒,人内源性逆转录病毒,人乳头瘤病毒,胃肠道/口腔菌群
      白塞病[8] 链球菌,结核分枝杆菌,幽门螺杆菌,肠道/口腔菌群,疱疹病毒科
      系统性硬化症[9] EB病毒,细小病毒B19,幽门螺杆菌,巨细胞病毒,人疱疹病毒6型,逆转录病毒
      干燥综合征[10] EB病毒,细小病毒B19,丙型肝炎病毒,人疱疹病毒6型,巨细胞病毒,人嗜T淋巴球病毒1型,共生菌
    下载: 导出CSV
  • [1] Pisetsky DS. Pathogenesis of autoimmune disease[J]. Nat Rev Nephrol, 2023, 19: 509-524.
    [2] Hussein HM, Rahal EA. The role of viral infections in the development of autoimmune diseases[J]. Crit Rev Microbiol, 2019, 45: 394-412. doi:  10.1080/1040841X.2019.1614904
    [3] Goldberg E, Krause I. Infection and type 1 diabetes mellitus-a two edged sword?[J]. Autoimmun Rev, 2009, 8: 682-686. doi:  10.1016/j.autrev.2009.02.017
    [4] Kumagi T, Abe M, Ikeda Y, et al. Infection as a risk factor in the pathogenesis of primary biliary cirrhosis: pros and cons[J]. Dis Markers, 2010, 29: 313-321. doi:  10.1155/2010/791310
    [5] Khalesi Z, Tamrchi V, Razizadeh MH, et al. Association between human herpesviruses and multiple sclerosis: A systematic review and meta-analysis[J]. Microb Pathog, 2023, 177: 106031. doi:  10.1016/j.micpath.2023.106031
    [6] Quaglia M, Merlotti G, De Andrea M, et al. Viral Infections and Systemic Lupus Erythematosus: New Players in an Old Story[J]. Viruses, 2021, 13: 277. doi:  10.3390/v13020277
    [7] Gremese E, Tolusso B, Bruno D, et al. Infectious agents breaking the immunological tolerance: The holy grail in rheumatoid arthritis reconsidered[J]. Autoimmun Rev, 2022, 21: 103102. doi:  10.1016/j.autrev.2022.103102
    [8] Cheng L, Zhan H, Liu Y, et al. Infectious agents and pathogenesis of Behçet's disease: An extensive review[J]. Clin Immunol, 2023, 251: 109631. doi:  10.1016/j.clim.2023.109631
    [9] Soldan SS, Lieberman PM. Epstein-Barr virus and multiple sclerosis[J]. Nat Rev Microbiol, 2023, 21: 51-64. doi:  10.1038/s41579-022-00770-5
    [10] Björk A, Mofors J, Wahren-Herlenius M. Environmental factors in the pathogenesis of primary Sjögren's syndrome[J]. J Intern Med, 2020, 287: 475-492. doi:  10.1111/joim.13032
    [11] Rojas M, Restrepo-Jiménez P, Monsalve DM, et al. Molecular mimicry and autoimmunity[J]. J Autoimmun, 2018, 95: 100-123. doi:  10.1016/j.jaut.2018.10.012
    [12] Cunningham MW. Molecular Mimicry, Autoimmunity, and Infection: The Cross-Reactive Antigens of Group A Streptococci and their Sequelae[J]. Microbiol Spectr, 2019, 7: 10.1128/microbiolspec.GPP3-0045-2018. doi:  10.1128/microbiolspec.GPP3-0045-2018
    [13] Lee H, Jeong S, Shin EC. Significance of bystander T cell activation in microbial infection[J]. Nat Immunol, 2022, 23: 13-22. doi:  10.1038/s41590-021-00985-3
    [14] Cornaby C, Gibbons L, Mayhew V, et al. B cell epitope spreading: mechanisms and contribution to autoimmune diseases[J]. Immunol Lett, 2015, 163: 56-68. doi:  10.1016/j.imlet.2014.11.001
    [15] Christen U. Pathogen infection and autoimmune disease[J]. Clin Exp Immunol, 2019, 195: 10-14.
    [16] Nekoua MP, Alidjinou EK, Hober D. Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus[J]. Nat Rev Endocrinol, 2022, 18: 503-516. doi:  10.1038/s41574-022-00688-1
    [17] Carré A, Vecchio F, Flodström-Tullberg M, et al. Coxsackievirus and Type 1 Diabetes: Diabetogenic Mechanisms and Implications for Prevention[J]. Endocr Rev, 2023, 44: 737-751. doi:  10.1210/endrev/bnad007
    [18] Root-Bernstein R, Chiles K, Huber J, et al. Clostridia and Enteroviruses as Synergistic Triggers of Type 1 Diabetes Mellitus[J]. Int J Mol Sci, 2023, 24: 8336. doi:  10.3390/ijms24098336
    [19] Prince MI, Ducker SJ, James OF. Case-control studies of risk factors for primary biliary cirrhosis in two United Kingdom populations[J]. Gut, 2010, 59: 508-512. doi:  10.1136/gut.2009.184218
    [20] Tanaka A, Leung PSC, Gershwin ME. Pathogen infections and primary biliary cholangitis[J]. Clin Exp Immunol, 2019, 195: 25-34.
    [21] Bjornevik K, Cortese M, Healy BC, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis[J]. Science, 2022, 375: 296-301. doi:  10.1126/science.abj8222
    [22] Robinson WH, Steinman L. Epstein-Barr virus and multiple sclerosis[J]. Science, 2022, 375: 264-265. doi:  10.1126/science.abm7930
    [23] He R, Du Y, Wang C. Epstein-Barr virus infection: the leading cause of multiple sclerosis[J]. Signal Transduct Target Ther, 2022, 7: 239. doi:  10.1038/s41392-022-01100-0
    [24] Rostgaard K, Nielsen NM, Melbye M, et al. Siblings reduce multiple sclerosis risk by preventing delayed primary Epstein-Barr virus infection[J]. Brain, 2023, 146: 1993-2002. doi:  10.1093/brain/awac401
    [25] Afrasiabi A, Keane JT, Ong LTC, et al. Genetic and transcriptomic analyses support a switch to lytic phase in Epstein Barr virus infection as an important driver in developing Systemic Lupus Erythematosus[J]. J Autoimmun, 2022, 127: 102781. doi:  10.1016/j.jaut.2021.102781
    [26] Harley JB, James JA. Epstein-Barr virus infection induces lupus autoimmunity[J]. Bull NYU Hosp Jt Dis, 2006, 64: 45-50.
    [27] Reis AD, Mudinutti C, de Freitas Peigo M, et al. Active human herpesvirus infections in adults with systemic lupus erythematosus and correlation with the SLEDAI score[J]. Adv Rheumatol, 2020, 60: 42. doi:  10.1186/s42358-020-00144-6
    [28] Mahroum N, Elsalti A, Shoenfeld Y. Herpes simplex virus and SLE: Though uncommon yet with significant implications[J]. J Med Virol, 2023, 95: e28689. doi:  10.1002/jmv.28689
    [29] Tomofuji Y, Maeda Y, Oguro-Igashira E, et al. Metagenome- wide association study revealed disease-specific landscape of the gut microbiome of systemic lupus erythematosus in Japanese[J]. Ann Rheum Dis, 2021, 80: 1575-1583. doi:  10.1136/annrheumdis-2021-220687
    [30] Aletaha D, Smolen JS. Diagnosis and Management of Rheumatoid Arthritis: A Review[J]. JAMA, 2018, 320: 1360-1372. doi:  10.1001/jama.2018.13103
    [31] Maeda Y, Kurakawa T, Umemoto E, et al. Dysbiosis Contributes to Arthritis Development via Activation of Autoreac-tive T Cells in the Intestine[J]. Arthritis Rheumatol, 2016, 68: 2646-2661. doi:  10.1002/art.39783
    [32] Wegner N, Wait R, Sroka A, et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis[J]. Arthritis Rheum, 2010, 62: 2662-2672. doi:  10.1002/art.27552
    [33] Jiang L, Shang M, Yu S, et al. A high-fiber diet synergizes with Prevotella copri and exacerbates rheumatoid arthritis[J]. Cell Mol Immunol, 2022, 19: 1414-1424. doi:  10.1038/s41423-022-00934-6
    [34] Zheng Z, Sohn S, Ahn KJ, et al. Serum reactivity against herpes simplex virus type 1 UL48 protein in Behçet's disease patients and a Behçet's disease-like mouse model[J]. Acta Derm Venereol, 2015, 95: 952-958. doi:  10.2340/00015555-2127
    [35] Silva NSM, Rodrigues LFC, Dores-Silva PR, et al. Structural, thermodynamic and functional studies of human 71 kDa heat shock cognate protein (HSPA8/hHsc70)[J]. Biochim Biophys Acta Proteins Proteom, 2021, 1869: 140719. doi:  10.1016/j.bbapap.2021.140719
    [36] Yang TH, Aosai F, Norose K, et al. Heat shock cognate protein 71-associated peptides function as an epitope for Toxoplasma gondii-specific CD4+CTL[J]. Microbiol Immunol, 1997, 41: 553-561. doi:  10.1111/j.1348-0421.1997.tb01891.x
    [37] Cho SB, Zheng Z, Ahn KJ, et al. Serum IgA reactivity against GroEL of Streptococcus sanguinis and human heterogeneous nuclear ribonucleoprotein A2/B1 in patients with Behçet disease[J]. Br J Dermatol, 2013, 168: 977-983. doi:  10.1111/bjd.12128
    [38] Deniz R, Emrence Z, Yalçinkaya Y, et al. Improved sensitivity of the skin pathergy test with polysaccharide pneumococcal vaccine antigens in the diagnosis of Behçet disease[J]. Rheumatology (Oxford), 2023, 62: 1903-1909. doi:  10.1093/rheumatology/keac543
    [39] Ouchene L, Muntyanu A, Lavoué J, et al. Toward Understanding of Environmental Risk Factors in Systemic Sclerosis[J]. J Cutan Med Surg, 2021, 25: 188-204. doi:  10.1177/1203475420957950
    [40] Soffritti I, D'Accolti M, Maccari C, et al. Human Cytomegalovirus and Human Herpesvirus 6 Coinfection of Dermal Fibroblasts Enhances the Pro-Inflammatory Pathway Predisposing to Fibrosis: The Possible Impact on Systemic Sclerosis[J]. Microorganisms, 2022, 10: 1600. doi:  10.3390/microorganisms10081600
    [41] Arvia R, Zakrzewska K, Giovannelli L, et al. Parvovirus B19 induces cellular senescence in human dermal fibroblasts: putative role in systemic sclerosis-associated fibrosis[J]. Rheumatology (Oxford), 2022, 61: 3864-3874. doi:  10.1093/rheumatology/keab904
    [42] Kim S, Park HJ, Lee SI. The Microbiome in Systemic Sclerosis: Pathophysiology and Therapeutic Potential[J]. Int J Mol Sci, 2022, 23: 16154. doi:  10.3390/ijms232416154
    [43] Stec A, Maciejewska M, Paralusz-Stec K, et al. The Gut Microbial Metabolite Trimethylamine N-Oxide is Linked to Specific Complications of Systemic Sclerosis[J]. J Inflamm Res, 2023, 16: 1895-1904. doi:  10.2147/JIR.S409489
    [44] Mofors J, Arkema EV, Björk A, et al. Infections increase the risk of developing Sjögren's syndrome[J]. J Intern Med, 2019, 285: 670-680. doi:  10.1111/joim.12888
    [45] Croia C, Astorri E, Murray-Brown W, et al. Implication of Epstein-Barr virus infection in disease-specific autoreactive B cell activation in ectopic lymphoid structures of Sjögren's syndrome[J]. Arthritis Rheumatol, 2014, 66: 2545-2557. doi:  10.1002/art.38726
    [46] Iwakiri D, Zhou L, Samanta M, et al. Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3[J]. J Exp Med, 2009, 206: 2091-2099. doi:  10.1084/jem.20081761
    [47] de Paiva CS, Jones DB, Stern ME, et al. Altered Mucosal Microbiome Diversity and Disease Severity in Sjögren Syndrome[J]. Sci Rep, 2016, 6: 23561. doi:  10.1038/srep23561
    [48] Liu Y, Sawalha AH, Lu Q. COVID-19 and autoimmune diseases[J]. Curr Opin Rheumatol, 2021, 33: 155-162. doi:  10.1097/BOR.0000000000000776
    [49] Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with COVID-19[J]. N Engl J Med, 2020, 382: e38. doi:  10.1056/NEJMc2007575
    [50] Xiao M, Zhang Y, Zhang S, et al. Antiphospholipid Antibodies in Critically Ill Patients With COVID-19[J]. Arthritis Rheumatol, 2020, 72: 1998-2004. doi:  10.1002/art.41425
    [51] Wang G, Wang Q, Wang Y, et al. Presence of Anti-MDA5 Antibody and Its Value for the Clinical Assessment in Patients With COVID-19: A Retrospective Cohort Study[J]. Front Immunol, 2021, 12: 791348. doi:  10.3389/fimmu.2021.791348
    [52] Philippot Q, Fekkar A, Gervais A, et al. Autoantibodies Neutralizing Type I IFNs in the Bronchoalveolar Lavage of at Least 10% of Patients During Life-Threatening COVID-19 Pneumonia[J]. J Clin Immunol, 2023, 43: 1093-1103.
    [53] Solanich X, Rigo-Bonnin R, Gumucio VD, et al. Pre-existing Autoantibodies Neutralizing High Concentrations of Type I Interferons in Almost 10% of COVID-19 Patients Admitted to Intensive Care in Barcelona[J]. J Clin Immunol, 2021, 41: 1733-1744.
    [54] Barrett CE, Koyama AK, Alvarez P, et al. Risk for Newly Diagnosed Diabetes >30 Days After SARS-CoV-2 Infection Among Persons Aged < 18 Years- United States, March 1, 2020-June 28, 2021[J]. MMWR Morb Mortal Wkly Rep, 2022, 71: 59-65.
    [55] McKeigue PM, McGurnaghan S, Blackbourn L, et al. Relation of Incident Type 1 Diabetes to Recent COVID-19 Infection: Cohort Study Using e-Health Record Linkage in Scotland[J]. Diabetes Care, 2023, 46: 921-928.
    [56] Daly JL, Simonetti B, Klein K, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection[J]. Science, 2020, 370: 861-865.
    [57] Cantuti-Castelvetri L, Ojha R, Pedro LD, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity[J]. Science, 2020, 370: 856-860.
    [58] Wu CT, Lidsky PV, Xiao Y, et al. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment[J]. Cell Metab, 2021, 33: 1565-1576. e5.
    [59] Chen J, Wu C, Wang X, et al. The Impact of COVID-19 on Blood Glucose: A Systematic Review and Meta-Analysis[J]. Front Endocrinol (Lausanne), 2020, 11: 574541.
    [60] Bonometti R, Sacchi MC, Stobbione P, et al. The first case of systemic lupus erythematosus (SLE) triggered by COVID-19 infection[J]. Eur Rev Med Pharmacol Sci, 2020, 24: 9695-9697.
    [61] Valencia Sanchez C, Theel E, Binnicker M, et al. Autoimmune Encephalitis After SARS-CoV-2 Infection: Case Frequency, Findings, and Outcomes[J]. Neurology, 2021, 97: e2262-e2268.
    [62] Capes A, Bailly S, Hantson P, et al. COVID-19 infection associated with autoimmune hemolytic anemia[J]. Ann Hematol, 2020, 99: 1679-1680.
    [63] Bourgonje AR, Andreu-Sánchez S, Vogl T, et al. Phage-display immunoprecipitation sequencing of the antibody epitope repertoire in inflammatory bowel disease reveals distinct antibody signatures[J]. Immunity, 2023, 56: 1393-1409. e6.
    [64] Enose-Akahata Y, Wang L, Almsned F, et al. The repertoire of CSF antiviral antibodies in patients with neuroinflammatory diseases[J]. Sci Adv, 2023, 9: eabq6978.
  • 加载中
表(1)
计量
  • 文章访问数:  1358
  • HTML全文浏览量:  39
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 录用日期:  2023-07-17
  • 网络出版日期:  2023-08-02
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!