留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PDGF促进创面修复的研究进展

赵琴 张进进 陈立力 邢颜超

赵琴, 张进进, 陈立力, 邢颜超. PDGF促进创面修复的研究进展[J]. 协和医学杂志, 2023, 14(6): 1289-1295. doi: 10.12290/xhyxzz.2023-0223
引用本文: 赵琴, 张进进, 陈立力, 邢颜超. PDGF促进创面修复的研究进展[J]. 协和医学杂志, 2023, 14(6): 1289-1295. doi: 10.12290/xhyxzz.2023-0223
ZHAO Qin, ZHANG Jinjin, CHEN Lili, XING Yanchao. Research Progress of PDGF Promoting Wound Repair[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1289-1295. doi: 10.12290/xhyxzz.2023-0223
Citation: ZHAO Qin, ZHANG Jinjin, CHEN Lili, XING Yanchao. Research Progress of PDGF Promoting Wound Repair[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1289-1295. doi: 10.12290/xhyxzz.2023-0223

PDGF促进创面修复的研究进展

doi: 10.12290/xhyxzz.2023-0223
基金项目: 

新疆维吾尔自治区自然科学基金面上项目 2022D01C342

详细信息
    通讯作者:

    邢颜超, E-mail: xingyanchao@aliyun.com

  • 中图分类号: R64;R62

Research Progress of PDGF Promoting Wound Repair

Funds: 

Natural Science Foundation of Xinjiang Uygur Autonomous Region 2022D01C342

More Information
  • 摘要: 血小板衍生生长因子(platelet-derived growth factor,PDGF)是一种多效能细胞因子,因具有启动细胞增殖、迁移、分泌并促进血管形成等作用,可促进伤口愈合,在创面修复领域备受关注。目前,含高浓度PDGF的富血小板血浆及重组人PDGF应用于创面修复已有数十年历史,因存在保质期短、异体使用受限或生物利用率低、副作用多等不足,使得其无法满足临床需求,而优化的富血小板纤维蛋白和浓缩生长因子,则具有更高的PDGF浓度,创面修复能力更佳。血小板裂解液保存期限可显著延长,且具有更小的异体使用风险,已成为血小板创面修复的发展方向。基于生物工程技术构建的高能递送系统可显著提高PDGF局部驻留率、延长作用时间,经过对PDGF结构进行改造,添加活性结构域可设计出多种能诱发持续强直信号的转化型PDGF,将活性结构域整合形成功能可控的PDGF模拟肽,并衍生了多种高效的PDGF基因递送策略,为解决创面修复问题提供了多种潜在选择。本文主要阐述PDGF的生理特性与应用特性及其在创面修复中的研究进展。
    作者贡献:赵琴负责文献查阅、论文撰写及修订;张进进、陈立力负责论文写作指导、提出修改意见;邢颜超负责论文审校、写作指导并提出修改意见。
    利益冲突:所有作者均声明不存在利益冲突
  • [1] Tang X, Hao M, Chang C, et al. Wound Healing Driver Gene and Therapeutic Development: Political and Scientific Hurdles[J]. Adv Wound Care (New Rochelle), 2021, 10: 415-435. doi:  10.1089/wound.2019.1143
    [2] Oliveira A, Simões S, Ascenso A, et al. Therapeutic advances in wound healing[J]. J Dermatolog Treat, 2022, 33: 2-22. doi:  10.1080/09546634.2020.1730296
    [3] Rahman MM, Garcia N, Loh YS, et al. A platelet-derived hydrogel improves neovascularisation in full thickness wounds[J]. Acta Biomater, 2021, 136: 199-209. doi:  10.1016/j.actbio.2021.09.043
    [4] Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes[J]. Open Biol, 2020, 10: 200223. doi:  10.1098/rsob.200223
    [5] Yao L, Rathnakar BH, Kwon HR, et al. Temporal control of PDGFRα regulates the fibroblast-to-myofibroblast transition in wound healing[J]. Cell Rep, 2022, 40: 111192. doi:  10.1016/j.celrep.2022.111192
    [6] Fernández-Simón E, Suárez-Calvet X, Carrasco-Rozas A, et al. RhoA/ROCK2 signalling is enhanced by PDGF-AA in fibro-adipogenic progenitor cells: implications for Duchenne muscular dystrophy[J]. J Cachexia Sarcopenia Muscle, 2022, 13: 1373-1384. doi:  10.1002/jcsm.12923
    [7] Contreras O, Córdova-Casanova A, Brandan E. PDGF-PDGFR network differentially regulates the fate, migration, proliferation, and cell cycle progression of myogenic cells[J]. Cell Signal, 2021, 84: 110036. doi:  10.1016/j.cellsig.2021.110036
    [8] Su W, Liu G, Liu X, et al. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development[J]. JCI Insight, 2020, 5: e135446. doi:  10.1172/jci.insight.135446
    [9] Shang Y, Liu H, Peng R, et al. PDGF-mimicking supramolecular nanofibers for ionizing radiation-induced injury repair[J]. Chem Eng J, 2021, 410: 128309. doi:  10.1016/j.cej.2020.128309
    [10] Chen Y, Jiang L, Lyu K, et al. A Promising Candidate in Tendon Healing Events-PDGF-BB[J]. Biomolecules, 2022, 12: 1518. doi:  10.3390/biom12101518
    [11] Jian K, Yang C, Li T, et al. PDGF-BB-derived supramolecular hydrogel for promoting skin wound healing[J]. J Nanobiotechnol, 2022, 20: 201. doi:  10.1186/s12951-022-01390-0
    [12] 曾淑红, 易成刚. 血小板浓缩提取物促进组织修复的研究进展[J]. 中国美容整形外科杂志, 2021, 32: 768-771. https://www.cnki.com.cn/Article/CJFDTOTAL-SMZW202112021.htm
    [13] Mochizuki M, Güç E, Park AJ, et al. Growth factors with enhanced syndecan binding generate tonic signalling and promote tissue healing[J]. Nat Biomed Eng, 2020, 4: 463-475.
    [14] Assoian RK, Grotendorst GR, Miller DM, et al. Cellular transformation by coordinated action of three peptide growth factors from human platelets[J]. Nature, 1984, 309: 804-806. doi:  10.1038/309804a0
    [15] Shirbhate U, Bajaj P. Third-Generation Platelet Concent-rates in Periodontal Regeneration: Gaining Ground in the Field of Regeneration[J]. Cureus, 2022, 14: e28072.
    [16] Heililahong H, Jin P, Lei H, et al. Whole transcriptome analysis of platelet concentrates during storage[J]. Blood Transfus, 2023, 21: 146-156.
    [17] Shashank B, Bhushan M. Injectable Platelet-Rich Fibrin (PRF): The newest biomaterial and its use in various dermatological conditions in our practice: A case series[J]. J Cosmet Dermatol, 2021, 20: 1421-1426. doi:  10.1111/jocd.13742
    [18] Choukroun J, Adda F, Schoeffler C, et al. Une opportunite' en paro-implantologie: le PRF[J]. Implantodontie, 2001, 42: 55-62.
    [19] Tunali M, Özdemir H, Küçükodaci Z, et al. A novel platelet concentrate: titanium-prepared platelet-rich fibrin[J]. Biomed Res Int, 2014, 2014: 209548.
    [20] Corigliano M, Sacco L, Baldoni E. CGF-una proposta terapeutica per la medicina rigenerativa[J]. Odontoiatria, 2010, 1: 69-81.
    [21] Rodella LF, Favero G, Boninsegna R, et al. Growth factors, CD34 positive cells, and fibrin network analysis in concentrated growth factors fraction[J]. Microsc Res Tech, 2011, 74: 772-777. doi:  10.1002/jemt.20968
    [22] Cecerska-Heryć E, Goszka M, Serwin N, et al. Applications of the regenerative capacity of platelets in modern medicine[J]. Cytokine Growth Factor Rev, 2022, 64: 84-94. doi:  10.1016/j.cytogfr.2021.11.003
    [23] He M, Guo X, Li T, et al. Comparison of Allogeneic Platelet-rich Plasma With Autologous Platelet-rich Plasma for the Treatment of Diabetic Lower Extremity Ulcers[J]. Cell Transplant, 2020, 29: 963689720931428.
    [24] Zhao Q, Ma Y, Lu Y, et al. Successful Treatment of Chronic Lower Extremity Ulcers with Allogeneic Platelet-Rich Plasma and Artificial Dermis: A Case Report[J]. Adv Skin Wound Care, 2019, 32: 550-552. doi:  10.1097/01.ASW.0000604176.47082.60
    [25] Burnouf T, Goubran HA. Regenerative effect of expired platelet concentrates in human therapy: An update[J]. Transfus Apher Sci, 2022, 61: 103363. doi:  10.1016/j.transci.2022.103363
    [26] Daikuara LY, Yue Z, Skropeta D, et al. In vitro characterisation of 3D printed platelet lysate-based bioink for potential application in skin tissue engineering[J]. Acta Biomater, 2021, 123: 286-297. doi:  10.1016/j.actbio.2021.01.021
    [27] Guo X, Liu C, Zhang Y, et al. Effect of super activated platelet lysate on cell proliferation, repair and osteogenesis[J]. Biomed Mater Eng, 2023, 34: 95-109.
    [28] D'amico R, Malucelli C, Uccelli A, et al. Therapeutic arteriogenesis by factor-decorated fibrin matrices promotes wound healing in diabetic mice[J]. J Tissue Eng, 2022, 13: 20417314221119615.
    [29] Banerjee A, Koul V, Bhattacharyya J. Fabrication of In Situ Layered Hydrogel Scaffold for the Co-delivery of PGDF-BB/Chlorhexidine to Regulate Proinflammatory Cytokines, Growth Factors, and MMP-9 in a Diabetic Skin Defect Albino Rat Model[J]. Biomacromolecules, 2021, 22: 1885-1900. doi:  10.1021/acs.biomac.0c01709
    [30] Park TY, Maeng SW, Jeon EY, et al. Adhesive protein-based angiogenesis-mimicking spatiotemporal sequential release of angiogenic factors for functional regenerative medicine[J]. Biomaterials, 2021, 272: 120774. doi:  10.1016/j.biomaterials.2021.120774
    [31] Lee CH, Liu KS, Cheng CW, et al. Codelivery of Sustain-able Antimicrobial Agents and Platelet-Derived Growth Factor via Biodegradable Nanofibers for Repair of Diabetic Infectious Wounds[J]. ACS Infect Dis, 2020, 6: 2688-2697. doi:  10.1021/acsinfecdis.0c00321
    [32] Ahmad T, Mcgrath S, Sirafim C, et al. Development of wound healing scaffolds with precisely-triggered sequential release of therapeutic nanoparticles[J]. Biomater Sci, 2021, 9: 4278-4288. doi:  10.1039/D0BM01277G
    [33] Joshi A, Kaur T, Joshi A, et al. Light-Mediated 3D Printing of Micro-Pyramid-Decorated Tailorable Wound Dressings with Endogenous Growth Factor Sequestration for Improved Wound Healing[J]. ACS Appl Mater Interfaces, 2023, 15: 327-337. doi:  10.1021/acsami.2c16418
    [34] Wang P, Berry D, Moran A, et al. Controlled Growth Factor Release in 3D-Printed Hydrogels[J]. Adv Healthc Mater, 2020, 9: e1900977. doi:  10.1002/adhm.201900977
    [35] Rousselle P, Braye F, Dayan G. Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies[J]. Adv Drug Deliv Rev, 2019, 146: 344-365. doi:  10.1016/j.addr.2018.06.019
    [36] White MJV, Briquez PS, White DAV, et al. VEGF-A, PDGF-BB and HB-EGF engineered for promiscuous super affinity to the extracellular matrix improve wound healing in a model of type 1 diabetes[J]. NPJ Regen Med, 2021, 6: 76. doi:  10.1038/s41536-021-00189-1
    [37] Shim A, Liu H, Focia PJ, et al. Structures of a platelet-derived growth factor/propeptide complex and a platelet-derived growth factor/receptor complex[J]. Proc Natl Acad Sci U S A, 2010, 107: 11307-11312. doi:  10.1073/pnas.1000806107
    [38] Perez JJ. Designing Peptidomimetics[J]. Curr Top Med Chem, 2018, 18: 566-590. doi:  10.2174/1568026618666180522075258
    [39] Kumar S, Henning-Knechtel A, Magzoub M, et al. Peptidomimetic-Based Multidomain Targeting Offers Critical Evaluation of Aβ Structure and Toxic Function[J]. J Am Chem Soc, 2018, 140: 6562-6574. doi:  10.1021/jacs.7b13401
    [40] Deptuła M, Karpowicz P, Wardowska A, et al. Development of a Peptide Derived from Platelet-Derived Growth Factor (PDGF-BB) into a Potential Drug Candidate for the Treatment of Wounds[J]. Adv Wound Care (New Rochelle), 2020, 9: 657-675. doi:  10.1089/wound.2019.1051
    [41] Paramasivam T, Maiti SK, Palakkara S, et al. Effect of PDGF-B Gene-Activated Acellular Matrix and Mesenchymal Stem Cell Transplantation on Full Thickness Skin Burn Wound in Rat Model[J]. Tissue Eng Regen Med, 2021, 18: 235-251. doi:  10.1007/s13770-020-00302-3
    [42] Thapa RK, Margolis DJ, Kiick KL, et al. Enhanced wound healing via collagen-turnover-driven transfer of PDGF-BB gene in a murine wound model[J]. ACS Appl Bio Mater, 2020, 3: 3500-3517. doi:  10.1021/acsabm.9b01147
    [43] Hu WW, Lin YT. Alginate/polycaprolactone composite fibers as multifunctional wound dressings[J]. Carbohydr Polym, 2022, 289: 119440. doi:  10.1016/j.carbpol.2022.119440
    [44] Shi R, Lian W, Han S, et al. Nanosphere-mediated co-delivery of VEGF-A and PDGF-B genes for accelerating diabetic foot ulcers healing in rats[J]. Gene Ther, 2018, 25: 425-438. doi:  10.1038/s41434-018-0027-6
  • 加载中
计量
  • 文章访问数:  179
  • HTML全文浏览量:  23
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 录用日期:  2023-07-18
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!