留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小胶质细胞与NLRP3炎症小体在认知功能障碍中作用的研究进展

王彩红 刘荣鑫 汤峰 魏晓涛 徐紫清 侯怀晶 张杰 赵永强 薛建军

王彩红, 刘荣鑫, 汤峰, 魏晓涛, 徐紫清, 侯怀晶, 张杰, 赵永强, 薛建军. 小胶质细胞与NLRP3炎症小体在认知功能障碍中作用的研究进展[J]. 协和医学杂志, 2023, 14(6): 1282-1288. doi: 10.12290/xhyxzz.2023-0217
引用本文: 王彩红, 刘荣鑫, 汤峰, 魏晓涛, 徐紫清, 侯怀晶, 张杰, 赵永强, 薛建军. 小胶质细胞与NLRP3炎症小体在认知功能障碍中作用的研究进展[J]. 协和医学杂志, 2023, 14(6): 1282-1288. doi: 10.12290/xhyxzz.2023-0217
WANG Caihong, LIU Rongxin, TANG Feng, WEI Xiaotao, XU Ziqing, HOU Huaijing, ZHANG Jie, ZHAO Yongqiang, XUE Jianjun. Research Progress on the Role of NLRP3 Inflammasome and Microglia in Cognitive Impairment[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1282-1288. doi: 10.12290/xhyxzz.2023-0217
Citation: WANG Caihong, LIU Rongxin, TANG Feng, WEI Xiaotao, XU Ziqing, HOU Huaijing, ZHANG Jie, ZHAO Yongqiang, XUE Jianjun. Research Progress on the Role of NLRP3 Inflammasome and Microglia in Cognitive Impairment[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1282-1288. doi: 10.12290/xhyxzz.2023-0217

小胶质细胞与NLRP3炎症小体在认知功能障碍中作用的研究进展

doi: 10.12290/xhyxzz.2023-0217
基金项目: 

甘肃省科技计划项目-临床医学研究中心建设 20JR10RA435

甘肃省科技计划项目-重点研发计划 22YF7FA101

详细信息
    通讯作者:

    赵永强, E-mail:1114221808@qq.com

    薛建军, E-mail:xjjfei419@163.com

  • 中图分类号: R614.4;R741;R364.5

Research Progress on the Role of NLRP3 Inflammasome and Microglia in Cognitive Impairment

Funds: 

Gansu Provincial Science and Technology Plan Project-Construction of Clinical Medical Research Center 20JR10RA435

Gansu Provincial Science and Technology Plan Project -Key Research and Development Plan 22YF7FA101

More Information
  • 摘要: 认知功能障碍作为一种常见的神经系统疾病,以认知减退、记忆力和注意力障碍为主要临床表现,严重影响患者的生存质量,是当前医学研究的热点和难点。认知功能障碍的病因及发病机制复杂多样,研究表明慢性持续性神经炎症在其发生发展中发挥关键作用。小胶质细胞、核苷酸结合寡聚化结构域样受体蛋白3(nucleotide-binding oligomerization domain-like receptor protein 3,NLRP3)炎症小体与神经炎症、认知功能障碍密切相关,调控小胶质细胞、NLRP3炎症小体可减少炎症因子、减少β淀粉样蛋白沉积、调控自噬、维持突触稳态,达到减轻神经炎症,进而防治认知功能障碍的作用。因此,阐明小胶质细胞、NLRP3炎症小体及二者共同在认知功能障碍中的作用机制,可为认知功能障碍相关机制的深入研究及临床防治、药物研发提供参考和依据。
    作者贡献:王彩红、薛建军、魏晓涛负责查阅文献及撰写论文;刘荣鑫、汤峰、徐紫清、候怀晶、张杰负责修订论文;王彩红、薛建军、赵永强负责设计选题和审校论文。
    利益冲突:所有作者均声明不存在利益冲突
  • [1] 王志刚, 陈永学, 尹春平, 等. 炎症反应在围术期神经认知障碍中的作用研究进展[J]. 临床麻醉学杂志, 2023, 39: 189-192. https://www.cnki.com.cn/Article/CJFDTOTAL-LCMZ202302016.htm
    [2] Gonzales MM, Garbarino VR, Pollet E, et al. Biological aging processes underlying cognitive decline and neurodegenerative disease[J]. J Clin Invest, 2022, 132: e158453. doi:  10.1172/JCI158453
    [3] Rost NS, Brodtmann A, Pase MP, et al. Post-Stroke Cognitive Impairment and Dementia[J]. Circ Res, 2022, 130: 1252-1271. doi:  10.1161/CIRCRESAHA.122.319951
    [4] Lecca D, Jung YJ, Scerba MT, et al. Role of chronic neuroinflammation in neuroplasticity and cognitive func-tion: A hypothesis[J]. Alzheimers Dement, 2022, 18: 2327-2340. doi:  10.1002/alz.12610
    [5] de Araújo Boleti AP, de Oliveira Flores TM, Moreno SE, et al. Neuroinflammation: An overview of neurodegenerative and metabolic diseases and of biotechnological studies[J]. Neurochem Int, 2020, 136: 104714. doi:  10.1016/j.neuint.2020.104714
    [6] Zhang M, Wang XL, Shi H, et al. Betaine Inhibits NLRP3 Inflammasome Hyperactivation and Regulates Microglial M1/M2 Phenotypic Differentiation, Thereby Attenuating Lipopolysaccharide-Induced Depression-Like Behavior[J]. J Immunol Res, 2022, 2022: 9313436.
    [7] He XF, Li LL, Xian WB, et al. Chronic colitis exacer-bates NLRP3-dependent neuroinflammation and cognitive impairment in middle-aged brain[J]. J Neuroinflammation, 2021, 18: 153. doi:  10.1186/s12974-021-02199-8
    [8] Heneka MT, Kummer MP, Stutz A, et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice[J]. Nature, 2013, 493: 674-678. doi:  10.1038/nature11729
    [9] Ising C, Venegas C, Zhang S, et al. NLRP3 inflam-masome activation drives tau pathology[J]. Nature, 2019, 575: 669-673. doi:  10.1038/s41586-019-1769-z
    [10] Heneka MT, Golenbock D, Latz E, et al. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease[J]. Alzheimers Res Ther, 2020, 12: 69. doi:  10.1186/s13195-020-00640-3
    [11] Zhang X, Xu A, Lv J, et al. Development of small molecule inhibitors targeting NLRP3 inflammasome pathway for inflammatory diseases[J]. Eur J Med Chem, 2020, 185: 111822. doi:  10.1016/j.ejmech.2019.111822
    [12] Cowan M, Petri WA Jr. Microglia: Immune Regulators of Neurodevelopment[J]. Front Immunol, 2018, 9: 2576. doi:  10.3389/fimmu.2018.02576
    [13] Lu Y, Zhou M, Li Y, et al. Minocycline promotes functional recovery in ischemic stroke by modulating microglia polarization through STAT1/STAT6 pathways[J]. Biochem Pharmacol, 2021, 186: 114464. doi:  10.1016/j.bcp.2021.114464
    [14] Wei JA, Liu L, Song X, et al. Physical exercise modulates the microglial complement pathway in mice to relieve cortical circuitry deficits induced by mutant human TDP-43[J]. Cell Rep, 2023, 42: 112240. doi:  10.1016/j.celrep.2023.112240
    [15] Karino K, Kono M, Takeyama S, et al. Inhibitor of NF-κB Kinase Subunit ε Contributes to Neuropsychiatric Manifestations in Lupus-Prone Mice Through Microglial Activation[J]. Arthritis Rheumatol, 2023, 75: 411-423. doi:  10.1002/art.42352
    [16] Chen Y, Peng F, Xing Z, et al. Beneficial effects of natural flavonoids on neuroinflammation[J]. Front Immunol, 2022, 13: 1006434. doi:  10.3389/fimmu.2022.1006434
    [17] Kelley N, Jeltema D, Duan Y, et al. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation[J]. Int J Mol Sci, 2019, 20: 3328. doi:  10.3390/ijms20133328
    [18] Guo Y, Gan X, Zhou H, et al. Fingolimod suppressed the chronic unpredictable mild stress-induced depressive-like behaviors via affecting microglial and NLRP3 inflammasome activation[J]. Life Sci, 2020, 263: 118582. doi:  10.1016/j.lfs.2020.118582
    [19] Heneka MT, Kummer MP, Stutz A, et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice[J]. Nature, 2013, 493: 674-678. doi:  10.1038/nature11729
    [20] de Calignon A, Fox LM, Pitstick R, et al. Caspase activation precedes and leads to tangles[J]. Nature, 2010, 464: 1201-1204. doi:  10.1038/nature08890
    [21] Qin Y, Qiu J, Wang P, et al. Impaired autophagy in microglia aggravates dopaminergic neurodegeneration by regulating NLRP3 inflammasome activation in experimental models of Parkinson's disease[J]. Brain Behav Immun, 2021, 91: 324-338. doi:  10.1016/j.bbi.2020.10.010
    [22] Haque ME, Akther M, Jakaria M, et al. Targeting the microglial NLRP3 inflammasome and its role in Parkinson's disease[J]. Mov Disord, 2020, 35: 20-33. doi:  10.1002/mds.27874
    [23] Hanslik KL, Ulland TK. The Role of Microglia and the Nlrp3 Inflammasome in Alzheimer's Disease[J]. Front Neurol, 2020, 11: 570711. doi:  10.3389/fneur.2020.570711
    [24] Han C, Yang Y, Guan Q, et al. New mechanism of nerve injury in Alzheimer's disease: β-amyloid-induced neuronal pyroptosis[J]. J Cell Mol Med, 2020, 24: 8078-8090. doi:  10.1111/jcmm.15439
    [25] van Zeller M, Dias D, Sebastião AM, et al. NLRP3 Inflammasome: A Starring Role in Amyloid-β- and Tau-Driven Pathological Events in Alzheimer's Disease[J]. J Alzheimers Dis, 2021, 83: 939-961. doi:  10.3233/JAD-210268
    [26] 张韬, 赵磊, 战锐, 等. 中医药干预神经退行性疾病引起的认知功能障碍的分子机制(英文)[J]. 生物化学与生物物理进展, 2020, 47: 729-742. https://www.cnki.com.cn/Article/CJFDTOTAL-SHSW202008007.htm
    [27] Moonen S, Koper MJ, Van Schoor E, et al. Pyroptosis in Alzheimer's disease: cell type-specific activation in microglia, astrocytes and neurons[J]. Acta Neuropathol, 2023, 145: 175-195. doi:  10.1007/s00401-022-02528-y
    [28] Nisa FY, Rahman MA, Hossen MA, et al. Role of neurotoxicants in the pathogenesis of Alzheimer's disease: a mechanistic insight[J]. Ann Med, 2021, 53: 1476-1501.
    [29] Wang Z, Meng S, Cao L, et al. Critical role of NLRP3-caspase-1 pathway in age-dependent isoflurane-induced microglial inflammatory response and cognitive impairment[J]. J Neuroinflammation, 2018, 15: 109. doi:  10.1186/s12974-018-1137-1
    [30] Madhu LN, Kodali M, Attaluri S, et al. Melatonin improves brain function in a model of chronic Gulf War Illness with modulation of oxidative stress, NLRP3 inflammasomes, and BDNF-ERK-CREB pathway in the hippocampus[J]. Redox Biol, 2021, 43: 101973. doi:  10.1016/j.redox.2021.101973
    [31] Lee HJ, Park JH, Hoe HS. Idebenone Regulates Aβ and LPS-Induced Neurogliosis and Cognitive Function Through Inhibition of NLRP3 Inflammasome/IL-1β Axis Activation[J]. Front Immunol, 2022, 13: 749336. doi:  10.3389/fimmu.2022.749336
    [32] Lam S, Hérard AS, Boluda S, et al. Pathological changes induced by Alzheimer's brain inoculation in amyloid-beta plaque-bearing mice[J]. Acta Neuropathol Commun, 2022, 10: 112. doi:  10.1186/s40478-022-01410-y
    [33] Chen Q, Abrigo J, Deng M, et al. Diffusion Changes in Hippocampal Cingulum in Early Biologically Defined Alzheimer's Disease[J]. J Alzheimers Dis, 2023, 91: 1007-1017. doi:  10.3233/JAD-220671
    [34] Datta M, Staszewski O, Raschi E, et al. Histone Deacetylases 1 and 2 Regulate Microglia Function during Development, Homeostasis, and Neurodegeneration in a Context-Dependent Manner[J]. Immunity, 2018, 48: 514-529. e6. doi:  10.1016/j.immuni.2018.02.016
    [35] Baik SH, Kang S, Lee W, et al. A Breakdown in Metabolic Reprogramming Causes Microglia Dysfunction in Alzheimer's Disease[J]. Cell Metab, 2019, 30: 493-507. e6. doi:  10.1016/j.cmet.2019.06.005
    [36] Lin C, Zhao S, Zhu Y, et al. Microbiota-gut-brain axis and toll-like receptors in Alzheimer's disease[J]. Comput Struct Biotechnol J, 2019, 17: 1309-1317. doi:  10.1016/j.csbj.2019.09.008
    [37] Liu Y, Dai Y, Li Q, et al. Beta-amyloid activates NLRP3 inflammasome via TLR4 in mouse microglia[J]. Neurosci Lett, 2020, 736: 135279. doi:  10.1016/j.neulet.2020.135279
    [38] Mishra SR, Mahapatra KK, Behera BP, et al. Mitochon-drial dysfunction as a driver of NLRP3 inflammasome activation and its modulation through mitophagy for potential therapeutics[J]. Int J Biochem Cell Biol, 2021, 136: 106013. doi:  10.1016/j.biocel.2021.106013
    [39] Dong AQ, Yang YP, Jiang SM, et al. Pramipexole inhibits astrocytic NLRP3 inflammasome activation via Drd3-dependent autophagy in a mouse model of Parkinson's disease[J]. Acta Pharmacol Sin, 2023, 44: 32-43. doi:  10.1038/s41401-022-00951-1
    [40] Pupyshev AB, Tenditnik MV, Ovsyukova MV, et al. Restoration of Parkinson's Disease-Like Deficits by Activating Autophagy through mTOR-Dependent and mTOR-Indepen-dent Mechanisms in Pharmacological and Transgenic Models of Parkinson's Disease in Mice[J]. Bull Exp Biol Med, 2021, 171: 425-430. doi:  10.1007/s10517-021-05242-z
    [41] Zhang Q, Zhou J, Shen M, et al. Pyrroloquinoline Quinone Inhibits Rotenone-Induced Microglia Inflamma-tion by Enhancing Autophagy[J]. Molecules, 2020, 25: 4359. doi:  10.3390/molecules25194359
    [42] Ghavami S, Shojaei S, Yeganeh B, et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders[J]. Prog Neurobiol, 2014, 112: 24-49. doi:  10.1016/j.pneurobio.2013.10.004
    [43] Ying ZM, Lv QK, Yao XY, et al. BAG3 promotes autophagy and suppresses NLRP3 inflammasome activation in Parkinson's disease[J]. Ann Transl Med, 2022, 10: 1218. doi:  10.21037/atm-22-5159
    [44] Qiu WQ, Ai W, Zhu FD, et al. Polygala saponins inhibit NLRP3 inflammasome-mediated neuroinflammation via SHP-2-Mediated mitophagy[J]. Free Radic Biol Med, 2022, 179: 76-94. doi:  10.1016/j.freeradbiomed.2021.12.263
    [45] Cho MH, Cho K, Kang HJ, et al. Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome[J]. Autophagy, 2014, 10: 1761-1775. doi:  10.4161/auto.29647
    [46] Qiu Z, Zhang H, Xia M, et al. Programmed Death of Microglia in Alzheimer's Disease: Autophagy, Ferroptosis, and Pyroptosis[J]. J Prev Alzheimers Dis, 2023, 10: 95-103.
    [47] Wang X, Jia J. Magnolol improves Alzheimer's disease-like pathologies and cognitive decline by promoting autophagy through activation of the AMPK/mTOR/ULK1 pathway[J]. Biomed Pharmacother, 2023, 161: 114473. doi:  10.1016/j.biopha.2023.114473
    [48] Chang YP, Ka SM, Hsu WH, et al. Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagy[J]. J Cell Physiol, 2015, 230: 1567-1579. doi:  10.1002/jcp.24903
    [49] Zhao J, Fu Y, Yamazaki Y, et al. APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids[J]. Nat Commun, 2020, 11: 5540. doi:  10.1038/s41467-020-19264-0
    [50] Peng L, Bestard-Lorigados I, Song W. The synapse as a treatment avenue for Alzheimer's Disease[J]. Mol Psychiatry, 2022, 27: 2940-2949. doi:  10.1038/s41380-022-01565-z
    [51] Harris JA, Devidze N, Verret L, et al. Transsynaptic progression of amyloid-β-induced neuronal dysfunction within the entorhinal-hippocampal network[J]. Neuron, 2010, 68: 428-441. doi:  10.1016/j.neuron.2010.10.020
    [52] Lonnemann N, Hosseini S, Marchetti C, et al. The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer's disease[J]. Proc Natl Acad Sci U S A, 2020, 117: 32145-32154. doi:  10.1073/pnas.2009680117
    [53] 梁晓, 金香兰, 彭丹涛, 等. 复方苁蓉益智胶囊治疗血管性痴呆临床应用专家共识[J]. 中国中药杂志, 2022, 47: 6514-6519. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202223031.htm
    [54] Jin X, Liu MY, Zhang DF, et al. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway[J]. CNS Neurosci Ther, 2019, 25: 575-590. doi:  10.1111/cns.13086
  • 加载中
计量
  • 文章访问数:  583
  • HTML全文浏览量:  100
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-27
  • 录用日期:  2023-07-07
  • 网络出版日期:  2023-09-04
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!