留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微生物菌群与抗肿瘤药物疗效及不良反应相关性研究进展

王娜 韩晓红

王娜, 韩晓红. 微生物菌群与抗肿瘤药物疗效及不良反应相关性研究进展[J]. 协和医学杂志, 2023, 14(5): 932-938. doi: 10.12290/xhyxzz.2023-0212
引用本文: 王娜, 韩晓红. 微生物菌群与抗肿瘤药物疗效及不良反应相关性研究进展[J]. 协和医学杂志, 2023, 14(5): 932-938. doi: 10.12290/xhyxzz.2023-0212
WANG Na, HAN Xiaohong. Research Progress on the Correlation Between Microbiota and the Efficacy and Adverse Reactions of Antitumor Drug[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 932-938. doi: 10.12290/xhyxzz.2023-0212
Citation: WANG Na, HAN Xiaohong. Research Progress on the Correlation Between Microbiota and the Efficacy and Adverse Reactions of Antitumor Drug[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 932-938. doi: 10.12290/xhyxzz.2023-0212

微生物菌群与抗肿瘤药物疗效及不良反应相关性研究进展

doi: 10.12290/xhyxzz.2023-0212
基金项目: 

中央高水平医院临床科研专项 2022-PUMCH-B-033

详细信息
    通讯作者:

    韩晓红, E-mail: hanxiaohong@pumch.cn

  • 中图分类号: R73;R453;R456

Research Progress on the Correlation Between Microbiota and the Efficacy and Adverse Reactions of Antitumor Drug

Funds: 

National High Level Hospital Clinical Research Funding 2022-PUMCH-B-033

More Information
  • 摘要: 抗肿瘤药物不断推陈出新,但药物响应率有限及药物不良反应问题严重限制了其临床应用。近年来,“药物微生物组学”概念兴起,越来越多的研究表明,人体微生物菌群在抗肿瘤药物治疗中发挥重要作用。本文从化疗药物、分子靶向药物、免疫治疗药物三方面综述微生物菌群与抗肿瘤药物的相互作用,机制涉及免疫调节、激素水平调节、代谢物水平调节、药物生物转化及跨膜转运调节等,并对可改善抗肿瘤药物疗效及不良反应的微生物菌群调控策略进行概述,以期为临床抗肿瘤药物个体化治疗提供参考。
    作者贡献:王娜负责文献检索、论文撰写;韩晓红负责选题设计、论文审校。
    利益冲突:所有作者均声明不存在利益冲突
  • 表  1  微生物菌群对化疗药物疗效及不良反应的影响及其作用机制

    机制分类 微生物菌群 化疗药物 微生物菌群影响药物疗效及不良反应
    免疫调节 约氏乳杆菌、海氏肠球菌 环磷酰胺 增加肿瘤内细胞毒性T细胞/调节性T细胞比例,增强疗效
    肠道巴恩斯氏菌 环磷酰胺 促进γδT细胞肿瘤浸润,增强疗效
    粪球菌属、Dorea及瘤胃球菌属 环磷酰胺、顺铂、卡铂 诱导CD4+ T细胞水平升高,增强疗效
    具核梭杆菌 奥沙利铂、5-Fu 激活TLR4-MYD88-NF-κB通路,导致机体耐药
    大肠杆菌、嗜黏蛋白阿克曼菌等 吉西他滨、5-Fu、伊立替康、奥沙利铂 激活NF-κB信号通路,导致黏膜炎不良反应
    鼠李糖乳酸杆菌 5-Fu、奥沙利铂 恢复厚壁菌门/拟杆菌门丰度比,缓解黏膜炎不良反应
    激素水平调节 大肠杆菌 5-Fu 降低宿主糖皮质激素水平, 加剧黏膜炎不良反应
    瘤胃球菌属、拟杆菌属 比卡鲁胺、恩杂鲁胺、阿比特龙 将雄激素前体转化为活性雄激素,降低雄激素剥夺疗法疗效
    代谢水平调节 丁酸盐产生菌 5-Fu、吉西他滨、奥沙利铂 促进肿瘤细胞凋亡,增强疗效
    丁酸梭状芽孢杆菌 顺铂、吉西他滨 上调丁酸盐产生菌丰度,缓解肠道黏膜炎不良反应
    药物生物转化及跨膜转运调节 大肠杆菌 5-Fu 通过核糖核苷酸代谢途径及细菌维生素B6和B9作用,增强疗效
    β-葡萄糖醛酸酶产生菌 伊立替康 将SN-38G代谢为SN-38,导致肠道损伤不良反应
    - 5-Fu 引起索利夫定与5-Fu间药物相互作用,导致严重不良反应
    植生拉乌尔菌、肺炎克雷伯菌、大肠杆菌 多柔比星 促进药物代谢,减少不良反应
    假单胞菌 甲氨蝶呤 产生羧肽酶G2促进药物代谢,减少不良反应
    TLR4:Toll样受体4;MYD88:髓样分化因子88; NF-κB:核因子κB; 5-Fu:5-氟尿嘧啶;SN-38G:SN-38葡萄糖醛酸苷;SN-38:7-乙基-10-羟基喜树碱
    下载: 导出CSV
  • [1] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA-Cancer J Clin, 2021, 71: 209-249. doi:  10.3322/caac.21660
    [2] Zhong L, Li Y, Xiong L, et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives[J]. Signal Transduct Target Ther, 2021, 6: 201. doi:  10.1038/s41392-021-00572-w
    [3] Roden DM, McLeod HL, Relling MV, et al. Pharmacogenomics[J]. Lancet, 2019, 394: 521-532. doi:  10.1016/S0140-6736(19)31276-0
    [4] Jia W, Li H, Zhao L, et al. Gut microbiota: a potential new territory for drug targeting[J]. Nat Rev Drug Discov, 2008, 7: 123-129. doi:  10.1038/nrd2505
    [5] Alexander JL, Wilson ID, Teare J, et al. Gut microbiota modulation of chemotherapy efficacy and toxicity[J]. Nat Rev Gastroenterol Hepatol, 2017, 14: 356-365. doi:  10.1038/nrgastro.2017.20
    [6] Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment[J]. Science, 2013, 342: 967-970. doi:  10.1126/science.1240527
    [7] Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide[J]. Science, 2013, 342: 971-976. doi:  10.1126/science.1240537
    [8] Daillère R, Vétizou M, Waldschmitt N, et al. Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects[J]. Immunity, 2016, 45: 931-943. doi:  10.1016/j.immuni.2016.09.009
    [9] Li Y, Dong B, Wu W, et al. Metagenomic Analyses Reveal Distinct Gut Microbiota Signature for Predicting the Neoadjuvant Chemotherapy Responsiveness in Breast Cancer Patients[J]. Front Oncol, 2022, 12: 865121. doi:  10.3389/fonc.2022.865121
    [10] Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy[J]. Cell, 2017, 170: 548-563. e16. doi:  10.1016/j.cell.2017.07.008
    [11] Zhang S, Yang Y, Weng W, et al. Fusobacterium nucle-atum promotes chemoresistance to 5-fluorouracil by upregulation of BIRC3 expression in colorectal cancer[J]. J Exp Clin Cancer Res, 2019, 38: 14. doi:  10.1186/s13046-018-0985-y
    [12] Logan RM, Stringer AM, Bowen JM, et al. The role of pro-inflammatory cytokines in cancer treatment-induced alimentary tract mucositis: pathobiology, animal models and cytotoxic drugs[J]. Cancer Treat Rev, 2007, 33: 448-460. doi:  10.1016/j.ctrv.2007.03.001
    [13] Bawaneh A, Wilson AS, Levi N, et al. Intestinal Microbiota Influence Doxorubicin Responsiveness in Triple-Negative Breast Cancer[J]. Cancers(Basel), 2022, 14: 4849.
    [14] Panebianco C, Adamberg K, Jaagura M, et al. Influence of gemcitabine chemotherapy on the microbiota of pancreatic cancer xenografted mice[J]. Cancer Chemother Pharmacol, 2018, 81: 773-782. doi:  10.1007/s00280-018-3549-0
    [15] Huang B, Gui M, Ni Z, et al. Chemotherapeutic Drugs Induce Different Gut Microbiota Disorder Pattern and NOD/RIP2/NF-κB Signaling Pathway Activation That Lead to Different Degrees of Intestinal Injury[J]. Microbiol Spectr, 2022, 10: e0167722. doi:  10.1128/spectrum.01677-22
    [16] Sfanos KS, Markowski MC, Peiffer LB, et al. Compositional differences in gastrointestinal microbiota in prostate cancer patients treated with androgen axis-targeted therapies[J]. Prostate Cancer Prostatic Dis, 2018, 21: 539-548. doi:  10.1038/s41391-018-0061-x
    [17] Pernigoni N, Zagato E, Calcinotto A, et al. Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis[J]. Science, 2021, 374: 216-224. doi:  10.1126/science.abf8403
    [18] Clark AR. Anti-inflammatory functions of glucocorticoid-induced genes[J]. Mol Cell Endocrinol, 2007, 275: 79-97. doi:  10.1016/j.mce.2007.04.013
    [19] Menezes-Garcia Z, Do Nascimento Arifa RD, Acúrcio L, et al. Colonization by Enterobacteriaceae is crucial for acute inflammatory responses in murine small intestine via regulation of corticosterone production[J]. Gut microbes, 2020, 11: 1531-1546. doi:  10.1080/19490976.2020.1765946
    [20] Liu H, Wang J, He T, et al. Butyrate: A Double-Edged Sword for Health?[J]. Adv Nutr, 2018, 9: 21-29. doi:  10.1093/advances/nmx009
    [21] Panebianco C, Villani A, Pisati F, et al. Butyrate, a postbiotic of intestinal bacteria, affects pancreatic cancer and gemcitabine response in in vitro and in vivo models[J]. Biomed Pharmacother, 2022, 151: 113163. doi:  10.1016/j.biopha.2022.113163
    [22] Geng HW, Yin FY, Zhang ZF, et al. Butyrate Suppresses Glucose Metabolism of Colorectal Cancer Cells via GPR109a-AKT Signaling Pathway and Enhances Chemotherapy[J]. Front Mol Biosci, 2021, 8: 634874. doi:  10.3389/fmolb.2021.634874
    [23] He Y, Fu L, Li Y, et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8(+) T cell immunity[J]. Cell Metab, 2021, 33: 988-1000. e7. doi:  10.1016/j.cmet.2021.03.002
    [24] Hsiao YP, Chen HL, Tsai JN, et al. Administration of Lactobacillus reuteri Combined with Clostridium butyricum Attenuates Cisplatin-Induced Renal Damage by Gut Microbiota Reconstitution, Increasing Butyric Acid Production, and Suppressing Renal Inflammation[J]. Nutrients, 2021, 13: 2792. doi:  10.3390/nu13082792
    [25] García-González AP, Ritter AD, Shrestha S, et al. Bacterial Metabolism Affects the C. elegans Response to Cancer Chemotherapeutics[J]. Cell, 2017, 169: 431-441. e8. doi:  10.1016/j.cell.2017.03.046
    [26] Scott TA, Quintaneiro LM, Norvaisas P, et al. Host-Microbe Co-metabolism Dictates Cancer Drug Efficacy in C. elegans[J]. Cell, 2017, 169: 442-456. e18. doi:  10.1016/j.cell.2017.03.040
    [27] Araki E, Ishikawa M, Iigo M, et al. Relationship between development of diarrhea and the concentration of SN-38, an active metabolite of CPT-11, in the intestine and the blood plasma of athymic mice following intraperitoneal administration of CPT-11[J]. Jpn J Cancer Res, 1993, 84: 697-702. doi:  10.1111/j.1349-7006.1993.tb02031.x
    [28] Okuda H, Nishiyama T, Ogura K, et al. Lethal drug interactions of sorivudine, a new antiviral drug, with oral 5-fluorouracil prodrugs[J]. Drug Metab Dispos, 1997, 25: 270-273.
    [29] Yan A, Culp E, Perry J, et al. Transformation of the Anticancer Drug Doxorubicin in the Human Gut Microbiome[J]. ACS Infect Dis, 2018, 4: 68-76. doi:  10.1021/acsinfecdis.7b00166
    [30] Widemann BC, Schwartz S, Jayaprakash N, et al. Efficacy of glucarpidase (carboxypeptidase g2) in patients with acute kidney injury after high-dose methotrexate therapy[J]. Pharmacotherapy, 2014, 34: 427-439. doi:  10.1002/phar.1360
    [31] BTG International Inc. VORAXAZE9(Glucarpidase)for injection prescribing information[EB/OL]. (2012-01-01)[2023-03-01]. http://www.accesdate.fda.gov/drugsatfda_docs/label/2012/125327lbl.pdf.
    [32] Di Modica M, Gargari G, Regondi V, et al. Gut Microbiota Condition the Therapeutic Efficacy of Trastuzumab in HER2-Positive Breast Cancer[J]. Cancer Res, 2021, 81: 2195-2206.
    [33] Chen YC, Chuang CH, Miao ZF, et al. Gut microbiota composition in chemotherapy and targeted therapy of patients with metastatic colorectal cancer[J]. Front Oncol, 2022, 12: 955313. doi:  10.3389/fonc.2022.955313
    [34] Pal SK, Li SM, Wu X, et al. Stool Bacteriomic Profiling in Patients with Metastatic Renal Cell Carcinoma Receiving Vascular Endothelial Growth Factor-Tyrosine Kinase Inhi-bitors[J]. Clin Cancer Res, 2015, 21: 5286-5293. doi:  10.1158/1078-0432.CCR-15-0724
    [35] Zhao B, Zhou B, Dong C, et al. Lactobacillus reuteri Alleviates Gastrointestinal Toxicity of Rituximab by Regulating the Proinflammatory T Cells in vivo[J]. Front Microbiol, 2021, 12: 645500. doi:  10.3389/fmicb.2021.645500
    [36] Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota[J]. Science, 2015, 350: 1079-1084. doi:  10.1126/science.aad1329
    [37] Sivan A, Corrales L, Hubert N, et al. Commensal Bifido-bacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy[J]. Science, 2015, 350: 1084-1089. doi:  10.1126/science.aac4255
    [38] Kaesler S, Wölbing F, Kempf WE, et al. Targeting tumor-resident mast cells for effective anti-melanoma immune responses. [J]. JCI insight, 2019, 4: 125057. doi:  10.1172/jci.insight.125057
    [39] Zhang SL, Han B, Mao YQ, et al. Lacticaseibacillus paracasei sh2020 induced antitumor immunity and synergized with anti-programmed cell death 1 to reduce tumor burden in mice. [J]. Gut microbes, 2022, 14: 2046246. doi:  10.1080/19490976.2022.2046246
    [40] Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. [J]. Science, 2018, 359: 91-97. doi:  10.1126/science.aan3706
    [41] Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients[J]. Science, 2018, 359: 97-103. doi:  10.1126/science.aan4236
    [42] Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients[J]. Science, 2018, 359: 104-108. doi:  10.1126/science.aao3290
    [43] Hamada K, Yoshimura K, Hirasawa Y, et al. Antibiotic Usage Reduced Overall Survival by over 70% in Non-small Cell Lung Cancer Patients on Anti-PD-1 Immunotherapy[J]. Anticancer Res, 2021, 41: 4985-4993. doi:  10.21873/anticanres.15312
    [44] Giordan Q, Salleron J, Vallance C, et al. Impact of Antibiotics and Proton Pump Inhibitors on Efficacy and Tolerance of Anti-PD-1 Immune Checkpoint Inhibitors[J]. Front Immunol, 2021, 12: 716317. doi:  10.3389/fimmu.2021.716317
    [45] Oster P, Vaillant L, Riva E, et al. Helicobacter pylori infection has a detrimental impact on the efficacy of cancer immunotherapies[J]. Gut, 2022, 71: 457-466. doi:  10.1136/gutjnl-2020-323392
    [46] Che H, Xiong Q, Ma J, et al. Association of Helicobacter pylori infection with survival outcomes in advanced gastric cancer patients treated with immune checkpoint inhibitors[J]. BMC cancer, 2022, 22: 904. doi:  10.1186/s12885-022-10004-9
    [47] Chaput N, Lepage P, Coutzac C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab[J]. Ann Oncol, 2017, 28: 1368-1379. doi:  10.1093/annonc/mdx108
    [48] Wang T, Zheng N, Luo Q, et al. Probiotics Lactobacillus reuteri Abrogates Immune Checkpoint Blockade-Associated Colitis by Inhibiting Group 3 Innate Lymphoid Cells[J]. Front Immunol, 2019, 10: 1235. doi:  10.3389/fimmu.2019.01235
    [49] Wang F, Yin Q, Chen L, et al. Bifidobacterium can mitigate intestinal immunopathology in the context of CTLA-4 blockade[J]. Proc Natl Acad Sci U S A, 2018, 115: 157-161. doi:  10.1073/pnas.1712901115
    [50] Imai H, Saijo K, Komine K, et al. Antibiotic therapy augments the efficacy of gemcitabine-containing regimens for advanced cancer: a retrospective study[J]. Cancer Manag Res, 2019, 11: 7953-7965. doi:  10.2147/CMAR.S215697
    [51] Alimonti A, Satta F, Pavese I, et al. Prevention of irinotecan plus 5-fluorouracil/leucovorin-induced diarrhoea by oral administration of neomycin plus bacitracin in first-line treatment of advanced colorectal cancer[J]. Ann Oncol, 2003, 14: 805-806.
    [52] Kuczma MP, Ding ZC, Li T, et al. The impact of antibiotic usage on the efficacy of chemoimmunotherapy is contingent on the source of tumor-reactive T cells[J]. Oncotarget, 2017, 8: 111931-111942. doi:  10.18632/oncotarget.22953
    [53] Chang CW, Liu CY, Lee HC, et al. Lactobacillus casei Variety rhamnosus Probiotic Preventively Attenuates 5-Fluorouracil/Oxaliplatin-Induced Intestinal Injury in a Syngeneic Colorectal Cancer Model[J]. Front Microbiol, 2018, 9: 983. doi:  10.3389/fmicb.2018.00983
    [54] Wu Y, Wu J, Lin Z, et al. Administration of a Probiotic Mixture Ameliorates Cisplatin-Induced Mucositis and Pica by Regulating 5-HT in Rats[J]. J Immunol Res, 2021, 2021: 9321196.
    [55] Han K, Nam J, Xu J, et al. Generation of systemic antitumour immunity via the in situ modulation of the gut microbiome by an orally administered inulin gel[J]. Nat Biomed Eng, 2021, 5: 1377-1388. doi:  10.1038/s41551-021-00749-2
    [56] Yin L, Huang G, Khan I, et al. Poria cocos polysaccharides exert prebiotic function to attenuate the adverse effects and improve the therapeutic outcome of 5-Fu in Apc(Min/+) mice[J]. Chin Med, 2022, 17: 116. doi:  10.1186/s13020-022-00667-8
    [57] Andrade MER, Trindade LM, Leocádio PCL, et al. Association of Fructo-oligosaccharides and Arginine Improves Severity of Mucositis and Modulate the Intestinal Microbiota[J]. Probiotics Antimicrob Proteins, 2023, 15: 424-440.
    [58] Borody TJ, Khoruts A. Fecal microbiota transplantation and emerging applications[J]. Nat Rev Gastroenterol Hepatol, 2011, 9: 88-96.
    [59] Chang CW, Lee HC, Li LH, et al. Fecal Microbiota Transplantation Prevents Intestinal Injury, Upregulation of Toll-Like Receptors, and 5-Fluorouracil/Oxaliplatin-Induced Toxicity in Colorectal Cancer[J]. Int J Mol Sci, 2020, 21: 386.
    [60] Davar D, Dzutsev AK, McCulloch JA, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients[J]. Science, 2021, 371: 595-602.
    [61] Borgers JSW, Burgers FH, Terveer EM, et al. Conversion of unresponsiveness to immune checkpoint inhibition by fecal microbiota transplantation in patients with metastatic melanoma: study protocol for a randomized phase Ib/Ⅱa trial[J]. BMC cancer, 2022, 22: 1366.
    [62] Nakatsu G, Zhou H, Wu WKK, et al. Alterations in Enteric Virome Are Associated With Colorectal Cancer and Survival Outcomes[J]. Gastroenterology, 2018, 155: 529-541. e5.
    [63] Coker OO, Nakatsu G, Dai RZ, et al. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer[J]. Gut, 2019, 68: 654-662.
  • 加载中
表(1)
计量
  • 文章访问数:  1310
  • HTML全文浏览量:  110
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-26
  • 录用日期:  2023-06-15
  • 网络出版日期:  2023-07-05
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!