留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

前列腺癌体系突变及治疗研究进展

吴礼益 严维刚

吴礼益, 严维刚. 前列腺癌体系突变及治疗研究进展[J]. 协和医学杂志, 2023, 14(4): 839-843. doi: 10.12290/xhyxzz.2022-0717
引用本文: 吴礼益, 严维刚. 前列腺癌体系突变及治疗研究进展[J]. 协和医学杂志, 2023, 14(4): 839-843. doi: 10.12290/xhyxzz.2022-0717
WU Liyi, YAN Weigang. Research Progress of Prostate Cancer Somatic Mutation and Treatment[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 839-843. doi: 10.12290/xhyxzz.2022-0717
Citation: WU Liyi, YAN Weigang. Research Progress of Prostate Cancer Somatic Mutation and Treatment[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 839-843. doi: 10.12290/xhyxzz.2022-0717

前列腺癌体系突变及治疗研究进展

doi: 10.12290/xhyxzz.2022-0717
基金项目: 

中央高水平医院临床科研专项 2022-PUMCH-A-063

详细信息
    通讯作者:

    严维刚, E-mail: ywgpumch@sina.com

  • 中图分类号: R737.25; Q344+.12

Research Progress of Prostate Cancer Somatic Mutation and Treatment

Funds: 

National High Level Hospital Clinical Research Funding 2022-PUMCH-A-063

More Information
  • 摘要: 前列腺癌是目前全球最常见的男性恶性肿瘤之一,严重威胁中老年男性健康。前列腺癌患者的临床表现和疾病预后具有个体差异,低危患者病程缓慢,死亡风险较低,而中高危患者预后较差,死亡风险较高。目前研究表明,前列腺癌的临床表现与基因突变相关,而体系突变作为前列腺癌基因突变的重要组成部分,与肿瘤的发生转移相关,可作为前列腺癌患者危险分级预后预测的潜在依据。本文就前列腺癌体系突变及治疗研究进展作一综述,以期为该疾病的诊断治疗提供借鉴。
    作者贡献:吴礼益负责文献整理与论文撰写;严维刚负责论文修订及审校。
    利益冲突:所有作者均声明不存在利益冲突
  • [1] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71: 209-249. doi:  10.3322/caac.21660
    [2] Eastham JA, Auffenberg GB, Barocas DA, et al. Clinically Localized Prostate Cancer: AUA/ASTRO Guideline, Part Ⅰ: Introduction, Risk Assessment, Staging, and Risk-Based Management[J]. J Urol, 2022, 208: 10-18. doi:  10.1097/JU.0000000000002757
    [3] Haffner MC, Zwart W, Roudier MP, et al. Genomic and phenotypic heterogeneity in prostate cancer[J]. Nat Rev Urol, 2021, 18: 79-92. doi:  10.1038/s41585-020-00400-w
    [4] Perner S, Mosquera JM, Demichelis F, et al. TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion[J]. Am J Surg Pathol, 2007, 31: 882-888. doi:  10.1097/01.pas.0000213424.38503.aa
    [5] Zhu Y, Mo M, Wei Y, et al. Epidemiology and genomics of prostate cancer in Asian men[J]. Nat Rev Urol, 2021, 18: 282-301. doi:  10.1038/s41585-021-00442-8
    [6] Kaffenberger SD, Barbieri CE. Molecular subtyping of prostate cancer[J]. Curr Opin Urol, 2016, 26: 213-218. doi:  10.1097/MOU.0000000000000285
    [7] Abeshouse A, Ahn J, Akbani R, et al. The molecular taxonomy of primary prostate cancer[J]. Cell, 2015, 163: 1011-1025. doi:  10.1016/j.cell.2015.10.025
    [8] Stopsack KH, Nandakumar S, Wibmer AG, et al. Onco-genic genomic alterations, clinical phenotypes, and outcomes in metastatic castration-sensitive prostate cancer[J]. Clin Cancer Res, 2020, 26: 3230-3238. doi:  10.1158/1078-0432.CCR-20-0168
    [9] Taitt HE. Global trends and prostate cancer: a review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location[J]. Am J Mens Health, 2018, 12: 1807-1823. doi:  10.1177/1557988318798279
    [10] Stopsack KH, Nandakumar S, Arora K, et al. Differences in Prostate Cancer Genomes by Self-Reported Race: Contributions of Genetic Ancestry, Modifiable Cancer Risk Factors, and Clinical FactorsRacial Differences in Prostate Cancer Genomes[J]. Clin Cancer Res, 2022, 28: 318-326. doi:  10.1158/1078-0432.CCR-21-2577
    [11] Li J, Xu C, Lee HJ, et al. A genomic and epigenomic atlas of prostate cancer in Asian populations[J]. Nature, 2020, 580: 93-99. doi:  10.1038/s41586-020-2135-x
    [12] Grossmann S, Hooks Y, Wilson L, et al. Development, maturation, and maintenance of human prostate inferred from somatic mutations[J]. Cell Stem Cell, 2021, 28: 1262-1274. doi:  10.1016/j.stem.2021.02.005
    [13] Stjohn J, Powell K, Conley-Lacomb MK, et al. TMPRSS2-ERG Fusion Gene Expression in Prostate Tumor Cells and Its Clinical and Biological Significance in Prostate Cancer Progression[J]. J Cancer Sci Ther, 2012, 4: 94-101.
    [14] Zhou F, Gao S, Han D, et al. TMPRSS2-ERG activates NO-cGMP signaling in prostate cancer cells[J]. Oncogene, 2019, 38: 4397-4411. doi:  10.1038/s41388-019-0730-9
    [15] Hong Z, Zhang W, Ding D, et al. DNA damage promotes TMPRSS2-ERG oncoprotein destruction and prostate cancer suppression via signaling converged by GSK3β and WEE1[J]. Mol Cell, 2020, 79: 1008-1023. doi:  10.1016/j.molcel.2020.07.028
    [16] Shoag J, Liu D, Blattner M, et al. SPOP mutation drives prostate neoplasia without stabilizing oncogenic transcription factor ERG[J]. J Clin Invest, 2018, 128: 381-386.
    [17] Bernasocchi T, El Tekle G, Bolis M, et al. Dual functions of SPOP and ERG dictate androgen therapy responses in prostate cancer[J]. Nat Commun, 2021, 12: 1-18. doi:  10.1038/s41467-020-20314-w
    [18] Zhang J, Chen M, Zhu Y, et al. SPOP promotes nanog destruction to suppress stem cell traits and prostate cancer progression[J]. Dev Cell, 2019, 48: 329-344. doi:  10.1016/j.devcel.2018.11.035
    [19] Luo Z, Wang J, Zhu Y, et al. SPOP promotes CDCA5 degradation to regulate prostate cancer progression via the AKT pathway[J]. Neoplasia, 2021, 23: 1037-1047. doi:  10.1016/j.neo.2021.08.002
    [20] Teng M, Zhou S, Cai C, et al. Pioneer of prostate cancer: past, present and the future of FOXA1[J]. Protein Cell, 2021, 12: 29-38. doi:  10.1007/s13238-020-00786-8
    [21] Gao S, Chen S, Han D, et al. Forkhead domain mutations in FOXA1 drive prostate cancer progression[J]. Cell Res, 2019, 29: 770-772. doi:  10.1038/s41422-019-0203-2
    [22] Song B, Park SH, Zhao JC, et al. Targeting FOXA1-mediated repression of TGF-β signaling suppresses castration-resistant prostate cancer progression[J]. J Clin Invest, 2019, 129: 569-582.
    [23] Zhou S, Hawley J, Soares F, et al. Noncoding mutations target cis-regulatory elements of the FOXA1 plexus in prostate cancer[J]. Nat Commun, 2020, 11: 441. doi:  10.1038/s41467-020-14318-9
    [24] Aurilio G, Cimadamore A, Mazzucchelli R, et al. Androgen receptor signaling pathway in prostate cancer: from genetics to clinical applications[J]. Cells, 2020, 9: 2653. doi:  10.3390/cells9122653
    [25] Li Y, Yang R, Henzler CM, et al. Diverse AR Gene Rearrangements Mediate Resistance to Androgen Receptor Inhibitors in Metastatic Prostate CancerAR Gene Rearrangements in Prostate Cancer[J]. Clin Cancer Res, 2020, 26: 1965-1976. doi:  10.1158/1078-0432.CCR-19-3023
    [26] Zhu Y, Dalrymple SL, Coleman I, et al. Role of androgen receptor splice variant-7 (AR-V7) in prostate cancer resistance to 2nd-generation androgen receptor signaling inhibitors[J]. Oncogene, 2020, 39: 6935-6949. doi:  10.1038/s41388-020-01479-6
    [27] Zhou T, Wang S, Song X, et al. RNF8 up-regulates AR/ARV7 action to contribute to advanced prostate cancer progression[J]. Cell Death Dis, 2022, 13: 1-15.
    [28] Donehower LA, Soussi T, Korkut A, et al. Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas[J]. Cell Rep, 2019, 28: 1370-1384. doi:  10.1016/j.celrep.2019.07.001
    [29] Nientiedt C, Budczies J, Endris V, et al. Mutations in TP53 or DNA damage repair genes define poor prognostic subgroups in primary prostate cancer[J]. Urol Oncol, 2022, 40: 8. e11-8. e18.
    [30] Hamid A, Gray P, Shaw G, et al. Compound Genomic Alterations of TP53, PTEN, and RB1 Tumor Suppressors in Localized and Metastatic Prostate Cancer[J]. Eur Urol, 2019, 76: 89-97. doi:  10.1016/j.eururo.2018.11.045
    [31] LIU Z, GUO H, ZHU Y, et al. TP53 alterations of hormone-naive prostate cancer in the Chinese population[J]. Prostate Cancer Prostatic Dis, 2021, 24: 482-491. doi:  10.1038/s41391-020-00302-3
    [32] Annala M, Vandekerkhove G, Khalaf D, et al. Circulating Tumor DNA Genomics Correlate with Resistance to Abiraterone and Enzalutamide in Prostate CancerctDNA and Resistance to AR-Targeted Therapy[J]. Cancer Discov, 2018, 8: 444-457. doi:  10.1158/2159-8290.CD-17-0937
    [33] Rampias T, Karagiannis D, Avgeris M, et al. The lysine specific methyltransferase KMT 2C/MLL 3 regulates DNA repair components in cancer[J]. EMBO Rep, 2019, 20: e46821. doi:  10.15252/embr.201846821
    [34] Wei Y, Wu J, Gu W, et al. Germline DNA repair gene mutation landscape in Chinese prostate cancer patients[J]. Eur Urol, 2019, 76: 280-283. doi:  10.1016/j.eururo.2019.06.004
    [35] Messina C, Cattrini C, Soldato D, et al. BRCA Mutations in Prostate Cancer: Prognostic and Predictive Implications[J]. J Oncol, 2020, 2020: 4986365.
  • 加载中
计量
  • 文章访问数:  185
  • HTML全文浏览量:  41
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-19
  • 录用日期:  2023-01-31
  • 刊出日期:  2023-07-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!