留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新冠疫情的新挑战:Omicron变异株特征及科学防疫新阶段

李懿 徐英春

李懿, 徐英春. 新冠疫情的新挑战:Omicron变异株特征及科学防疫新阶段[J]. 协和医学杂志, 2023, 14(1): 9-17. doi: 10.12290/xhyxzz.2022-0697
引用本文: 李懿, 徐英春. 新冠疫情的新挑战:Omicron变异株特征及科学防疫新阶段[J]. 协和医学杂志, 2023, 14(1): 9-17. doi: 10.12290/xhyxzz.2022-0697
LI Yi, XU Yingchun. A New Chapter in the COVID-19 Pandemic: the Characteristics of Omicron Variant and A New Step for Scientific Epidemic Prevention and Control[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 9-17. doi: 10.12290/xhyxzz.2022-0697
Citation: LI Yi, XU Yingchun. A New Chapter in the COVID-19 Pandemic: the Characteristics of Omicron Variant and A New Step for Scientific Epidemic Prevention and Control[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 9-17. doi: 10.12290/xhyxzz.2022-0697

新冠疫情的新挑战:Omicron变异株特征及科学防疫新阶段

doi: 10.12290/xhyxzz.2022-0697
基金项目: 

临床病原微生物精准诊断与转化研究 2022-PUMCH-B-074

新发突发传染病临床诊断产品及应急救治相关标志物研究 2021-I2M-1-038

2020年度北京市临床重点专科项目 2K201000

详细信息
    通讯作者:

    徐英春, E-mail: xycpumch@139.com

  • 中图分类号: R511; R373.1

A New Chapter in the COVID-19 Pandemic: the Characteristics of Omicron Variant and A New Step for Scientific Epidemic Prevention and Control

Funds: 

National High Level Hospital Clinical Research Funding 2022-PUMCH-B-074

Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences 2021-I2M-1-038

Beijing Key Clinical Specialty for Laboratory Medicine -Excellent Project 2K201000

More Information
  • 摘要: 自新冠疫情暴发以来,新冠病毒不断进化,Omicron作为第五个世界卫生组织公布的值得关注的变异株(variants of concern,VOCs),在基因组学、生物学以及流行病学特征上与之前的VOCs存在明显差异。虽然Omicron感染导致的重症率和死亡率相对其他VOCs明显下降,但其极强的传播力不断突破既往感染和疫苗建立的人群免疫屏障和防疫壁垒,可以说Omicron揭开了新冠疫情防控的新篇章。本文对Omicron变异株及其亚种的基因组学、生物学、流行病学特征及其与流感病毒的差异进行阐述,以期为优化疫情防控策略提供科学依据。
    作者贡献:李懿负责资料收集和论文撰写;徐英春负责论文修订并审阅定稿。
    利益冲突:所有作者均声明不存在利益冲突
  • 图  1  全球SARS-CoV-2基因组的时间尺度系统发育树

  • [1] World Health Organization. SARS-CoV-2 variants of concern and variants of interest[EB/OL]. [2022-12-06]. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/.
    [2] Berkhout B, Herrera-Carrillo E. SARS-CoV-2 Evolution: On the Sudden Appearance of the Omicron Variant[J]. J Virol, 2022, 96: e0009022. doi:  10.1128/jvi.00090-22
    [3] Dejnirattisai W, Huo J, Zhou D, et al. SARS-CoV-2 Omicron-B. 1.1.529 leads to widespread escape from neutralizing antibody responses[J]. Cell, 2022, 185: 467-484. e15. doi:  10.1016/j.cell.2021.12.046
    [4] Chen J, Wang R, Gilby NB, et al. Omicron Variant (B. 1.1.529): Infectivity, Vaccine Breakthrough, and Antibody Resistance[J]. J Chem Inf Model, 2022, 62: 412-422. doi:  10.1021/acs.jcim.1c01451
    [5] Mannar D, Saville JW, Zhu X, et al. SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein-ACE2 complex[J]. Science, 2022, 375: 760-764. doi:  10.1126/science.abn7760
    [6] Tegally H, Moir M, Everatt J, et al. Emergence of SARS-CoV-2 Omicron lineages BA. 4 and BA. 5 in South Africa[J]. Nat Med, 2022, 28: 1785-1790. doi:  10.1038/s41591-022-01911-2
    [7] World Health Organization. Weekly epidemiological update on Covid-19-23 November 2022[EB/OL]. (2022-11-23)[2022-12-06] https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19-23-nove-mber-2022.
    [8] Hadfield J, Megill C, Bell SM, et al. Nextstrain: real-time tracking of pathogen evolution[J]. Bioinformatics, 2018, 34: 4121-4123. doi:  10.1093/bioinformatics/bty407
    [9] Planas D, Saunders N, Maes P, et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization[J]. Nature, 2022, 602: 671-675. doi:  10.1038/s41586-021-04389-z
    [10] Simon-Loriere E, Schwartz O. Towards SARS-CoV-2 serotypes?[J]. Nat Rev Microbiol, 2022, 20: 187-188. doi:  10.1038/s41579-022-00708-x
    [11] Wilks SH, Mühlemann B, Shen X, et al. Mapping SARS-CoV-2 antigenic relationships and serological responses[J]. bioRxiv, 2022. doi: 10.1101/2022.01.28.477987.
    [12] Thakur V, Ratho RK. OMICRON (B. 1.1.529): A new SARS-CoV-2 variant of concern mounting worldwide fear[J]. J Med Virol, 2022, 94: 1821-1824. doi:  10.1002/jmv.27541
    [13] Menni C, Valdes AM, Polidori L, et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: a prospective observa-tional study from the ZOE COVID Study[J]. Lancet, 2022, 399: 1618-1624. doi:  10.1016/S0140-6736(22)00327-0
    [14] Kim MK, Lee B, Choi YY, et al. Clinical Characteristics of 40 Patients Infected With the SARS-CoV-2 Omicron Variant in Korea[J]. J Korean Med Sci, 2022, 37: e31. doi:  10.3346/jkms.2022.37.e31
    [15] Wolter N, Jassat W, Walaza S, et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study[J]. Lancet, 2022, 399: 437-446. doi:  10.1016/S0140-6736(22)00017-4
    [16] Lewnard JA, Hong VX, Patel MM, et al. Clinical outcomes associated with SARS-CoV-2 Omicron (B. 1.1.529) variant and BA. 1/BA. 1.1 or BA. 2 subvariant infection in Southern California[J]. Nat Med, 2022, 28: 1933-1943. doi:  10.1038/s41591-022-01887-z
    [17] Jassat W, Abdool Karim SS, Mudara C, et al. Clinical severity of COVID-19 in patients admitted to hospital during the omicron wave in South Africa: a retrospective observational study[J]. Lancet Glob Health, 2022, 10: e961-e969. doi:  10.1016/S2214-109X(22)00114-0
    [18] World Health Organization. Severity of disease associated with Omicron variant as compared with Delta variant in hospitalized patients with suspected or confirmed SARS-CoV-2 infection[EB/OL]. (2022-06-07)[2022-12-06]. https://www.who.int/publications/i/item/9789240051829.
    [19] Ulloa AC, Buchan SA, Daneman N, et al. Estimates of SARS-CoV-2 Omicron Variant Severity in Ontario, Canada[J]. JAMA, 2022, 327: 1286-1288. doi:  10.1001/jama.2022.2274
    [20] Strasser ZH, Greifer N, Hadavand A, et al. Estimates of SARS-CoV-2 Omicron BA. 2 Subvariant Severity in New England[J]. JAMA Netw Open, 2022, 5: e2238354. doi:  10.1001/jamanetworkopen.2022.38354
    [21] Davies MA, Morden E, Rosseau P, et al. Outcomes of laboratory-confirmed SARS-CoV-2 infection during resurgence driven by Omicron lineages BA. 4 and BA. 5 compared with previous waves in the Western Cape Province, South Africa[J]. Int J Infect Dis, 2022. doi: 10.1101/2022.06.28.22276983.
    [22] Callaway E. What Omicron's BA. 4 and BA. 5 variants mean for the pandemic[J]. Nature, 2022, 606: 848-849. doi:  10.1038/d41586-022-01730-y
    [23] Bentley EG, Kirby A, Sharma P, et al. SARS-CoV-2 Omicron-B. 1.1.529 Variant leads to less severe disease than Pango B and Delta variants strains in a mouse model of severe COVID-19[J]. bioRxiv, 2021. doi: https://doi.org/10.1101/2021.12.26.474085.
    [24] Hui KPY, Ho JCW, Cheung MC, et al. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo[J]. Nature, 2022, 603: 715-720. doi:  10.1038/s41586-022-04479-6
    [25] Brüssow H. COVID-19: Omicron-the latest, the least virulent, but probably not the last variant of concern of SARS-CoV-2[J]. Microb Biotechnol, 2022, 15: 1927-1939. doi:  10.1111/1751-7915.14064
    [26] Peacock TP, Brown JC, Zhou J, et al. The altered entry pathway and antigenic distance of the SARS-CoV-2 Omicron variant map to separate domains of spike protein[J]. bioRxiv, 2022: 2021.12.31.474653.
    [27] Meng B, Abdullahi A, Ferreira I, et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity[J]. Nature, 2022, 603: 706-714. doi:  10.1038/s41586-022-04474-x
    [28] Goga A, Bekker LG, Garrett N, et al. Breakthrough Covid-19 infections during periods of circulating Beta, Delta and Omicron variants of concern, among health care workers in the Sisonke Ad26. COV2. S vaccine trial, South Africa[J]. medRxiv, 2021: 2021.12.21.21268171.
    [29] Altarawneh HN, Chemaitelly H, Hasan MR, et al. Protection against the Omicron Variant from Previous SARS-CoV-2 Infection[J]. N Engl J Med, 2022, 386: 1288-1290. doi:  10.1056/NEJMc2200133
    [30] Khan K, Karim F, Ganga Y, et al. Omicron BA. 4/BA. 5 escape neutralizing immunity elicited by BA. 1 infection[J]. Nat Commun, 2022, 13: 4686. doi:  10.1038/s41467-022-32396-9
    [31] Ohashi H, Hishiki T, Akazawa D, et al. Different efficacies of neutralizing antibodies and antiviral drugs on SARS-CoV-2 Omicron subvariants, BA. 1 and BA. 2[J]. Antiviral Res, 2022, 205: 105372. doi:  10.1016/j.antiviral.2022.105372
    [32] Takashita E, Kinoshita N, Yamayoshi S, et al. Efficacy of Antiviral Agents against the SARS-CoV-2 Omicron Subvariant BA. 2[J]. N Engl J Med, 2022, 386: 1475-1477. doi:  10.1056/NEJMc2201933
    [33] Wang Q, Guo Y, Iketani S, et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA. 2.12.1, BA. 4 and BA. 5[J]. Nature, 2022, 608: 603-608.
    [34] Yu J, Collier AY, Rowe M, et al. Neutralization of the SARS-CoV-2 Omicron BA. 1 and BA. 2 Variants[J]. N Engl J Med, 2022, 386: 1579-1580. doi:  10.1056/NEJMc2201849
    [35] Kurhade C, Zou J, Xia H, et al. Neutralization of Omicron BA. 1, BA. 2, and BA. 3 SARS-CoV-2 by 3 doses of BNT162b2 vaccine[J]. Nat Commun, 2022, 13: 3602. doi:  10.1038/s41467-022-30681-1
    [36] Chemaitelly H, Abu-Raddad LJ. Waning effectiveness of COVID-19 vaccines[J]. Lancet, 2022, 399: 771-773. doi:  10.1016/S0140-6736(22)00277-X
    [37] Hachmann NP, Miller J, Collier AY, et al. Neutralization Escape by SARS-CoV-2 Omicron Subvariants BA. 2.12.1, BA. 4, and BA. 5[J]. N Engl J Med, 2022, 387: 86-88. doi:  10.1056/NEJMc2206576
    [38] Tuekprakhon A, Nutalai R, Dijokaite-Guraliuc A, et al. Antibody escape of SARS-CoV-2 Omicron BA. 4 and BA. 5 from vaccine and BA. 1 serum[J]. Cell, 2022, 185: 2422-2433. e13. doi:  10.1016/j.cell.2022.06.005
    [39] Karim SSA, Karim QA. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic[J]. Lancet, 2021, 398: 2126-2128. doi:  10.1016/S0140-6736(21)02758-6
    [40] Redd AD, Nardin A, Kared H, et al. Minimal Crossover between Mutations Associated with Omicron Variant of SARS-CoV-2 and CD8(+) T-Cell Epitopes Identified in COVID-19 Convalescent Individuals[J]. mBio, 2022, 13: e0361721. doi:  10.1128/mbio.03617-21
    [41] Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19[J]. Nat Med, 2020, 26: 842-844. doi:  10.1038/s41591-020-0901-9
    [42] Liu J, Chandrashekar A, Sellers D, et al. Vaccines elicit highly conserved cellular immunity to SARS-CoV-2 Omicron[J]. Nature, 2022, 603: 493-496. doi:  10.1038/s41586-022-04465-y
    [43] Tarke A, Coelho CH, Zhang Z, et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron[J]. Cell, 2022, 185: 847-859. e11. doi:  10.1016/j.cell.2022.01.015
    [44] Kirsebom FCM, Andrews N, Stowe J, et al. COVID-19 vaccine effectiveness against the omicron (BA. 2) variant in England[J]. Lancet Infect Dis, 2022, 22: 931-933. doi:  10.1016/S1473-3099(22)00309-7
    [45] Cheung PH, Chan CP, Jin DY. Lessons learned from the fifth wave of COVID-19 in Hong Kong in early 2022[J]. Emerg Microbes Infect, 2022, 11: 1072-1078. doi:  10.1080/22221751.2022.2060137
    [46] Ministry of Health, Singapore. COVID-19 Statistics[EB/OL]. [2022-12-06]. https://www.moh.gov.sg/COVID-19/statistics.
    [47] McMenamin ME, Nealon J, Lin Y, et al. Vaccine effectiveness of one, two, and three doses of BNT162b2 and CoronaVac against COVID-19 in Hong Kong: a population-based observational study[J]. Lancet Infect Dis, 2022, 22: 1435-1443. doi:  10.1016/S1473-3099(22)00345-0
    [48] Xu H, Li H, You H, et al. Effectiveness of inactivated COVID-19 vaccines against mild disease, pneumonia, and severe disease among persons infected with SARS-CoV-2 Omicron variant: Real-world study in Jilin Province, China[J]. Emerg Microbes Infect, 2022: 1-30.
    [49] Zhang X, Zhang W, Chen S. Shanghai's life-saving efforts against the current omicron wave of the COVID-19 pandemic[J]. Lancet, 2022, 399: 2011-2012. doi:  10.1016/S0140-6736(22)00838-8
    [50] Domingo FR, Waddell LA, Cheung AM, et al. Prevalence of long-term effects in individuals diagnosed with COVID-19: an updated living systematic review[J]. medRxiv, 2021: 2021.06.03.21258317.
    [51] Wulf Hanson S, Abbafati C, Aerts JG, et al. Estimated Global Proportions of Individuals With Persistent Fatigue, Cognitive, and Respiratory Symptom Clusters Following Symptomatic COVID-19 in 2020 and 2021[J]. JAMA, 2022, 328: 1604-1615. doi:  10.1001/jama.2022.18931
    [52] Hastie CE, Lowe DJ, McAuley A, et al. Outcomes among confirmed cases and a matched comparison group in the Long-COVID in Scotland study[J]. Nat Commun, 2022, 13: 5663. doi:  10.1038/s41467-022-33415-5
    [53] Antonelli M, Penfold RS, Merino J, et al. Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: a prospective, community-based, nested, case-control study[J]. Lancet Infect Dis, 2022, 22: 43-55. doi:  10.1016/S1473-3099(21)00460-6
    [54] Ayoubkhani D, Bermingham C, Pouwels KB, et al. Trajectory of long covid symptoms after COVID-19 vaccination: community based cohort study[J]. Bmj, 2022, 377: e069676.
    [55] Antonelli M, Pujol JC, Spector TD, et al. Risk of long COVID associated with delta versus omicron variants of SARS-CoV-2[J]. Lancet, 2022, 399: 2263-2264. doi:  10.1016/S0140-6736(22)00941-2
    [56] Faust JS, Del Rio C. Assessment of Deaths From COVID-19 and From Seasonal Influenza[J]. JAMA Intern Med, 2020, 180: 1045-1046. doi:  10.1001/jamainternmed.2020.2306
    [57] Ludwig M, Jacob J, Basedow F, et al. Clinical outcomes and characteristics of patients hospitalized for Influenza or COVID-19 in Germany[J]. Int J Infect Dis, 2021, 103: 316-322. doi:  10.1016/j.ijid.2020.11.204
    [58] Xue L, Jing S, Zhang K, et al. Infectivity versus fatality of SARS-CoV-2 mutations and influenza[J]. Int J Infect Dis, 2022, 121: 195-202. doi:  10.1016/j.ijid.2022.05.031
    [59] Jay Hilotin, Vijith Pulikkal. COVID-19: Omicron now less deadly than flu?[EB/OL]. (2022-3-11)[2022-12-06]. https://gulfnews.com/special-reports/COVID-19-omicron-now-less-deadly-than-flu-1.1647011926766.
    [60] Bilinski A, Thompson K, Emanuel E. COVID-19 and Excess All-Cause Mortality in the US and 20 Comparison Countries, June 2021-March 2022[J]. JAMA, 2022. doi: 10.1001/jama.2022.21795.
    [61] Ministry of Health (Singapore). COVID-19 Situation at a Glance[EB/OL]. [2022-12-06] https://www.moh.gov.sg/.
    [62] Iuliano AD, Roguski KM, Chang HH, et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study[J]. Lancet, 2018, 391: 1285-1300. doi:  10.1016/S0140-6736(17)33293-2
    [63] Li ZJ, Yu LJ, Zhang HY, et al. Broad Impacts of Coronavirus Disease 2019(COVID-19) Pandemic on Acute Respiratory Infections in China: An Observational Study[J]. Clin Infect Dis, 2022, 75: e1054-e1062. doi:  10.1093/cid/ciab942
    [64] Huang WJ, Cheng YH, Tan MJ, et al. Epidemiological and virological surveillance of influenza viruses in China during 2020-2021[J]. Infect Dis Poverty, 2022, 11: 74. doi:  10.1186/s40249-022-01002-x
    [65] Cohen R, Ashman M, Taha MK, et al. Pediatric Infectious Disease Group (GPIP) position paper on the immune debt of the COVID-19 pandemic in childhood, how can we fill the immunity gap?[J]. Infect Dis Now, 2021, 51: 418-423. doi:  10.1016/j.idnow.2021.05.004
    [66] Cai J, Deng X, Yang J, et al. Modeling transmission of SARS-CoV-2 Omicron in China[J]. Nat Med, 2022, 28: 1468-1475. doi:  10.1038/s41591-022-01855-7
    [67] Mallapaty S. Can China avoid a wave of deaths if it lifts strict zero COVID policy?[J]. Nature, 2022, 612: 203. doi:  10.1038/d41586-022-04235-w
  • 加载中
图(1)
计量
  • 文章访问数:  558
  • HTML全文浏览量:  74
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-06
  • 录用日期:  2022-12-20
  • 网络出版日期:  2022-12-26
  • 刊出日期:  2023-01-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!