留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

系统性红斑狼疮: 从发病机制到新型靶向治疗

沈田 吴小川

沈田, 吴小川. 系统性红斑狼疮: 从发病机制到新型靶向治疗[J]. 协和医学杂志, 2023, 14(2): 234-240. doi: 10.12290/xhyxzz.2022-0694
引用本文: 沈田, 吴小川. 系统性红斑狼疮: 从发病机制到新型靶向治疗[J]. 协和医学杂志, 2023, 14(2): 234-240. doi: 10.12290/xhyxzz.2022-0694
SHEN Tian, WU Xiaochuan. Systemic Lupus Erythematosus: from Pathogenesis to New Targeted Therapies[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 234-240. doi: 10.12290/xhyxzz.2022-0694
Citation: SHEN Tian, WU Xiaochuan. Systemic Lupus Erythematosus: from Pathogenesis to New Targeted Therapies[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 234-240. doi: 10.12290/xhyxzz.2022-0694

系统性红斑狼疮: 从发病机制到新型靶向治疗

doi: 10.12290/xhyxzz.2022-0694
基金项目: 

国家重点研发计划 2021YFC2702004

国家自然科学基金青年科学基金 82101905

详细信息
    通讯作者:

    吴小川, E-mail: xiaochuanwu@csu.edu.cn

  • 中图分类号: R593.2

Systemic Lupus Erythematosus: from Pathogenesis to New Targeted Therapies

Funds: 

National Key Research and Development Program of China 2021YFC2702004

National Natural Science Foundation of China Youth Project 82101905

More Information
  • 摘要: 系统性红斑狼疮(systemic lupus erythematosus,SLE)是一种累及多器官/系统的自身免疫性疾病,其病因复杂,涉及分子遗传、表观遗传、先天性免疫、获得性免疫、种族、激素和环境因素等多个方面。近年来,随着免疫细胞的精细分型、全基因组关联研究、单细胞测序、多组学分析、基因编辑等技术的推广应用,人们对SLE的发病机制有了越来越深入的认识,同时也推动了各种靶向免疫细胞、共刺激分子、细胞因子/信号转导通路的单克隆抗体或小分子药物以及嵌合抗原受体T细胞免疫治疗的开发及临床研究。贝利尤单抗、泰它西普、阿尼鲁单抗以及伏环孢素获批临床应用,为中重度SLE患者尤其是难治性SLE患者提供了更多选择。
    作者贡献:沈田负责撰写论文初稿、修订论文;吴小川负责审校论文。
    利益冲突:所有作者均声明不存在利益冲突
  • 表  1  SLE靶向治疗代表药物及其靶点

    分类 靶点 代表药物
    靶向B淋巴细胞 CD20 Rituximab(利妥昔单抗)
    CD22 Epratuzumab(依帕珠单抗)
    BAFF Belimumab(贝利尤单抗)
    Blys和APRIL Telitacicept(泰它西普)
    靶向T淋巴细胞共刺激分子 CD80 Abatacept(阿巴西普)
    CD40L Dapirolizumab Pegol(达比罗珠单抗聚乙二醇)
    靶向浆母细胞/浆细胞 CD38 Daratumumab(达雷妥尤单抗)
    靶向浆细胞样树突状细胞 BDCA2 Litifilimab
    靶向细胞因子 IL-6 Sirukumab(西鲁库单抗)
    IL-12/23 Ustekinumab(乌司奴单抗)
    IL-17A Secukinumab(苏金单抗)
    IL-23 Guselkumab(古塞库单抗)
    靶向细胞内信号通路 TNFR Etanercept(依那西普)
    TLR7/8 Enpatoran(恩帕托兰)
    Ⅰ型IFN受体 Anifrolumab(阿尼鲁单抗)
    JAK1/2 Baricitinib(巴瑞替尼)
    JAK1/2/3 Tofacitinib(托法替布)
    靶向细胞代谢 mTOR Sirolimus(西罗莫司)
    靶向蛋白酶体 20S proteasome Bortezomib(硼替佐米)
    新型钙调磷酸酶抑制剂 Calcineurin Voclosporin(伏环孢素)
    SLE: 系统性红斑狼疮;BDCA2:血液树突状细胞抗原2;IL: 白细胞介素;TNFR: 肿瘤坏死因子受体;TLR: Toll样受体;IFN: 干扰素;mTOR: 哺乳动物雷帕霉素靶蛋白
    下载: 导出CSV
  • [1] Unlu B, Tursen U, Jabalameli N, et al. Immunogenetics of Lupus Erythematosus[J]. Adv Exp Med Biol, 2022, 1367: 213-257.
    [2] Wang YF, Zhang Y, Lin Z, et al. Identification of 38 novel loci for systemic lupus erythematosus and genetic heterogeneity between ancestral groups[J]. Nat Commun, 2021, 12: 772. doi:  10.1038/s41467-021-21049-y
    [3] Wang M, Peng Y, Li H, et al. From monogenic lupus to TLR7/MyD88-targeted therapy[J]. Innovation (Camb), 2022, 3: 100299.
    [4] Shi F, Xue R, Zhou X, et al. Telitacicept as a BLyS/APRIL dual inhibitor for autoimmune disease[J]. Immunopharmacol Immunotoxicol, 2021, 43: 666-673. doi:  10.1080/08923973.2021.1973493
    [5] Parra Sanchez AR, Voskuyl AE, van Vollenhoven RF. Treat-to-target in systemic lupus erythematosus: advancing towards its implementation[J]. Nat Rev Rheumatol, 2022, 18: 146-157. doi:  10.1038/s41584-021-00739-3
    [6] Ameer MA, Chaudhry H, Mushtaq J, et al. An Overview of Systemic Lupus Erythematosus (SLE) Pathogenesis, Classification, and Management[J]. Cureus, 2022, 14: e30330.
    [7] Gordon RE, Nemeth JF, Singh S, et al. Harnessing SLE Autoantibodies for Intracellular Delivery of Biologic Therapeutics[J]. Trends Biotechnol, 2021, 39: 298-310. doi:  10.1016/j.tibtech.2020.07.003
    [8] Stohl W, Schwarting A, Okada M, et al. Efficacy and Safety of Subcutaneous Belimumab in Systemic Lupus Erythematosus: A Fifty-Two-Week Randomized, Double-Blind, Placebo-Controlled Study[J]. Arthritis Rheumatol, 2017, 69: 1016-1027. doi:  10.1002/art.40049
    [9] Steri M, Orru V, Idda ML, et al. Overexpression of the Cytokine BAFF and Autoimmunity Risk[J]. N Engl J Med, 2017, 376: 1615-1626. doi:  10.1056/NEJMoa1610528
    [10] Raupov RK, Suspitsin EN, Imelbaev AI, et al. Simul-taneous Onset of Pediatric Systemic Lupus Erythematosus in Twin Brothers: Case Report[J]. Front Pediatr, 2022, 10: 929358. doi:  10.3389/fped.2022.929358
    [11] Marion MC, Ramos PS, Bachali P, et al. Nucleic Acid-Sensing and Interferon-Inducible Pathways Show Differential Methylation in MZ Twins Discordant for Lupus and Overexpression in Independent Lupus Samples: Implications for Pathogenic Mechanism and Drug Targeting[J]. Genes (Basel), 2021, 12: 1898. doi:  10.3390/genes12121898
    [12] Breitbach ME, Ramaker RC, Roberts K, et al. Population-Specific Patterns of Epigenetic Defects in the B Cell Lineage in Patients With Systemic Lupus Erythematosus[J]. Arthritis Rheumatol, 2020, 72: 282-291. doi:  10.1002/art.41083
    [13] Hu N, Qiu X, Luo Y, et al. Abnormal histone modification patterns in lupus CD4+ T cells[J]. J Rheumatol, 2008, 35: 804-810.
    [14] Gautam P, Sharma A, Bhatnagar A. Global histone modification analysis reveals hypoacetylated H3 and H4 histones in B Cells from systemic lupus erythematosus patients[J]. Immunol Lett, 2021, 240: 41-45. doi:  10.1016/j.imlet.2021.09.007
    [15] Wardowska A, Komorniczak M, Bullo-Piontecka B, et al. Transcriptomic and Epigenetic Alterations in Dendritic Cells Correspond With Chronic Kidney Disease in Lupus Nephritis[J]. Front Immunol, 2019, 10: 2026. doi:  10.3389/fimmu.2019.02026
    [16] Pyfrom S, Paneru B, Knox JJ, et al. The dynamic epigenetic regulation of the inactive X chromosome in healthy human B cells is dysregulated in lupus patients[J]. Proc Natl Acad Sci U S A, 2021, 118: e2024624118. doi:  10.1073/pnas.2024624118
    [17] Zhang Q, Liang Y, Yuan H, et al. Integrated analysis of lncRNA, miRNA and mRNA expression profiling in patients with systemic lupus erythematosus[J]. Arch Med Sci, 2019, 15: 872-879. doi:  10.5114/aoms.2018.79145
    [18] Alsheikh AJ, Wollenhaupt S, King EA, et al. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases[J]. BMC Med Genomics, 2022, 15: 74. doi:  10.1186/s12920-022-01216-w
    [19] Hiramatsu-Asano S, Wada J. Therapeutic Approaches Targeting miRNA in Systemic Lupus Erythematosus[J]. Acta Med Okayama, 2022, 76: 359-371.
    [20] Psarras A, Wittmann M, Vital EM. Emerging concepts of type I interferons in SLE pathogenesis and therapy[J]. Nat Rev Rheumatol, 2022, 18: 575-590.
    [21] Farkas L, Beiske K, Lund-Johansen F, et al. Plasmacytoid dendritic cells (natural interferon-alpha/beta-producing cells) accumulate in cutaneous lupus erythematosus lesions[J]. Am J Pathol, 2001, 159: 237-243. doi:  10.1016/S0002-9440(10)61689-6
    [22] Rowland SL, Riggs JM, Gilfillan S, et al. Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model[J]. J Exp Med, 2014, 211: 1977-1991. doi:  10.1084/jem.20132620
    [23] Klopp-Schulze L, Shaw JV, Dong JQ, et al. Applying Modeling and Simulations for Rational Dose Selection of Novel Toll-Like Receptor 7/8 Inhibitor Enpatoran for Indications of High Medical Need[J]. Clin Pharmacol Ther, 2022, 112: 297-306. doi:  10.1002/cpt.2606
    [24] Alunno A, Padjen I, Fanouriakis A, et al. Pathogenic and Therapeutic Relevance of JAK/STAT Signaling in Systemic Lupus Erythematosus: Integration of Distinct Inflammatory Pathways and the Prospect of Their Inhibition with an Oral Agent[J]. Cells, 2019, 8: 898. doi:  10.3390/cells8080898
    [25] Furie RA, van Vollenhoven RF, Kalunian K, et al. Trial of Anti-BDCA2 Antibody Litifilimab for Systemic Lupus Erythematosus[J]. N Engl J Med, 2022, 387: 894-904. doi:  10.1056/NEJMoa2118025
    [26] Kishimoto D, Kirino Y, Tamura M, et al. Dysregulated heme oxygenase-1(low) M2-like macrophages augment lupus nephritis via Bach1 induced by type I interferons[J]. Arthritis Res Ther, 2018, 20: 64. doi:  10.1186/s13075-018-1568-1
    [27] Willemsen L, de Winther MP. Macrophage subsets in atherosclerosis as defined by single-cell technologies[J]. J Pathol, 2020, 250: 705-714. doi:  10.1002/path.5392
    [28] Ahamada MM, Jia Y, Wu X. Macrophage Polarization and Plasticity in Systemic Lupus Erythematosus[J]. Front Immunol, 2021, 12: 734008. doi:  10.3389/fimmu.2021.734008
    [29] Kucuksezer UC, Aktas Cetin E, Esen F, et al. The Role of Natural Killer Cells in Autoimmune Diseases[J]. Front Immunol, 2021, 12: 622306. doi:  10.3389/fimmu.2021.622306
    [30] Carmona-Rivera C, Kaplan MJ. Low-density granulocytes in systemic autoimmunity and autoinflammation[J]. Immunol Rev, 2022. doi:  10.1111/imr.13161.
    [31] Bolouri N, Akhtari M, Farhadi E, et al. Role of the innate and adaptive immune responses in the pathogenesis of systemic lupus erythematosus[J]. Inflamm Res, 2022, 71: 537-554. doi:  10.1007/s00011-022-01554-6
    [32] Chen PM, Tsokos GC. T Cell Abnormalities in the Pathogenesis of Systemic Lupus Erythematosus: an Update[J]. Curr Rheumatol Rep, 2021, 23: 12. doi:  10.1007/s11926-020-00978-5
    [33] Furie RA, Bruce IN, Dorner T, et al. Phase 2, rando-mized, placebo-controlled trial of dapirolizumab pegol in patients with moderate-to-severe active systemic lupus erythematosus[J]. Rheumatology (Oxford), 2021, 60: 5397-5407. doi:  10.1093/rheumatology/keab381
    [34] Shan J, Jin H, Xu Y. T Cell Metabolism: A New Perspective on Th17/Treg Cell Imbalance in Systemic Lupus Erythematosus[J]. Front Immunol, 2020, 11: 1027. doi:  10.3389/fimmu.2020.01027
    [35] He J, Zhang R, Shao M, et al. Efficacy and safety of low-dose IL-2 in the treatment of systemic lupus erythematosus: a randomised, double-blind, placebo-controlled trial[J]. Ann Rheum Dis, 2020, 79: 141-149.
    [36] Lai ZW, Kelly R, Winans T, et al. Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: a single-arm, open-label, phase 1/2 trial[J]. Lancet, 2018, 391: 1186-1196. doi:  10.1016/S0140-6736(18)30485-9
    [37] Guillonneau C, Aubry V, Renaudin K, et al. Inhibition of chronic rejection and development of tolerogenic T cells after ICOS-ICOSL and CD40-CD40L co-stimulation blockade[J]. Transplantation, 2005, 80: 546-554.
    [38] Zhang J, Guo Q, Dai D, et al. Rapamycin-encapsulated costimulatory ICOS/CD40L-bispecific nanoparticles restrict pathogenic helper T-B-cell interactions while in situ suppressing mTOR for lupus treatment[J]. Biomaterials, 2022, 289: 121766. doi:  10.1016/j.biomaterials.2022.121766
    [39] Radziszewska A, Moulder Z, Jury EC, et al. CD8(+) T Cell Phenotype and Function in Childhood and Adult-Onset Connective Tissue Disease[J]. Int J Mol Sci, 2022, 23: 11431. doi:  10.3390/ijms231911431
    [40] Perez RK, Gordon MG, Subramaniam M, et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus[J]. Science, 2022, 376: eabf1970. doi:  10.1126/science.abf1970
    [41] Lou H, Ling GS, Cao X. Autoantibodies in systemic lupus erythematosus: From immunopathology to therapeutic target[J]. J Autoimmun, 2022, 132: 102861. doi:  10.1016/j.jaut.2022.102861
    [42] Jenks SA, Cashman KS, Zumaquero E, et al. Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 Contribute to Pathogenic Responses in Systemic Lupus Erythematosus[J]. Immunity, 2018, 49: 725-739. e6. doi:  10.1016/j.immuni.2018.08.015
    [43] Phalke S, Rivera-Correa J, Jenkins D, et al. Molecular mechanisms controlling age-associated B cells in autoim-munity[J]. Immunol Rev, 2022, 307: 79-100. doi:  10.1111/imr.13068
    [44] Matsushita T. Regulatory and effector B cells: Friends or foes?[J]. J Dermatol Sci, 2019, 93: 2-7. doi:  10.1016/j.jdermsci.2018.11.008
    [45] Mougiakakos D, Kronke G, Volkl S, et al. CD19-Targeted CAR T Cells in Refractory Systemic Lupus Erythematosus[J]. N Engl J Med, 2021, 385: 567-569. doi:  10.1056/NEJMc2107725
    [46] Mackensen A, Muller F, Mougiakakos D, et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus[J]. Nat Med, 2022, 28: 2124-2132. doi:  10.1038/s41591-022-02017-5
    [47] Zhang W, Feng J, Cinquina A, et al. Treatment of Systemic Lupus Erythematosus using BCMA-CD19 Compound CAR[J]. Stem Cell Rev Rep, 2021, 17: 2120-2123. doi:  10.1007/s12015-021-10251-6
    [48] Oh S, Mao X, Manfredo-Vieira S, et al. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells[J]. Nat Biotechnol, 2023. doi:  10.1038/s41587-022-01637-z.
  • 加载中
表(1)
计量
  • 文章访问数:  2810
  • HTML全文浏览量:  449
  • PDF下载量:  341
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-05
  • 录用日期:  2023-03-02
  • 网络出版日期:  2023-03-12
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!