留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机体反应与血流动力学

王广健 王小亭

王广健, 王小亭. 机体反应与血流动力学[J]. 协和医学杂志, 2022, 13(6): 929-935. doi: 10.12290/xhyxzz.2022-0483
引用本文: 王广健, 王小亭. 机体反应与血流动力学[J]. 协和医学杂志, 2022, 13(6): 929-935. doi: 10.12290/xhyxzz.2022-0483
WANG Guangjian, WANG Xiaoting. Host Response and Hemodynamics[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 929-935. doi: 10.12290/xhyxzz.2022-0483
Citation: WANG Guangjian, WANG Xiaoting. Host Response and Hemodynamics[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 929-935. doi: 10.12290/xhyxzz.2022-0483

机体反应与血流动力学

doi: 10.12290/xhyxzz.2022-0483
基金项目: 

中央高水平医院临床科研业务费项目 2022-PUMCH-B-026

详细信息
    通讯作者:

    王小亭, E-mail: icuting@163.com

  • 中图分类号: R441.9

Host Response and Hemodynamics

Funds: 

National High Level Hospital Clinical Research Funding 2022-PUMCH-B-026

More Information
  • 摘要: 随着对重症病理生理机制的不断深入探索,机体反应作为衔接不同病因与重症发生发展过程中的“桥梁”而备受关注。机体反应是重症病理生理学的热点与重点,血流动力学是重症发生发展过程中的核心与重心,二者关系极为密切:一方面,机体反应可从多个方面对血流动力学产生显著影响; 另一方面,通过镇痛-镇静-抗交感治疗,炎症、免疫、凝血、代谢及生物能管理等方式干预机体反应,可稳定血流动力学,达到重症治疗的目的。加深对机体反应的认知和理解,不但丰富了重症血流动力学的内涵,而且有利于进一步研究和探索重症病理生理机制。鉴于此,本文从基于机体反应的重症新认识、机体反应对血流动力学的影响、基于机体反应的血流动力学治疗3个方面进行描述,详细阐明机体反应与血流动力学密不可分的关系。
    作者贡献:王广健负责查阅文献,起草并修订论文; 王小亭提出研究思路、指导并审校论文。
    利益冲突:所有作者均声明不存在利益冲突
  • [1] Hawchar F, Rao C, Akil A, et al. The Potential Role of Extracorporeal Cytokine Removal in Hemodynamic Stabilization in Hyperinflammatory Shock[J]. Biomedicines, 2021, 9: 768. doi:  10.3390/biomedicines9070768
    [2] Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)[J]. JAMA, 2016, 315: 801-810. doi:  10.1001/jama.2016.0287
    [3] 王广健, 刘大为, 王小亭. 基于机体反应与血流动力学的重症新认知[J]. 中华内科杂志, 2022, 61: 246-248. doi:  10.3760/cma.j.cn112138-20211215-00890
    [4] Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference[J]. Crit Care Med, 2003, 31: 1250-1256. doi:  10.1097/01.CCM.0000050454.01978.3B
    [5] Marshall JC. Iatrogenesis, inflammation and organ injury: insights from a murine model[J]. Crit Care, 2006, 10: 173. doi:  10.1186/cc5087
    [6] 刘大为. 重症医学: 学科体系的形成与发展[J]. 中华危重病急救医学, 2022, 34: 1-4. doi:  10.3760/cma.j.cn121430-20211224-01916
    [7] Brame AL, Singer M. Stressing the obvious? An allostatic look at critical illness[J]. Crit Care Med, 2010, 38: S600-S607. doi:  10.1097/CCM.0b013e3181f23e92
    [8] Arina P, Singer M. Pathophysiology of sepsis[J]. Curr Opin Anaesthesiol, 2021, 34: 77-84. doi:  10.1097/ACO.0000000000000963
    [9] Osuchowski MF, Winkler MS, Skirecki T, et al. The COVID-19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity[J]. Lancet Respir Med, 2021, 9: 622-642. doi:  10.1016/S2213-2600(21)00218-6
    [10] Sweeney TE, Liesenfeld O, Wacker J, et al. Validation of Inflammopathic, Adaptive, and Coagulopathic Sepsis Endotypes in Coronavirus Disease 2019[J]. Crit Care Med, 2021, 49: e170-e178. doi:  10.1097/CCM.0000000000004786
    [11] Neyton LPA, Zheng X, Skouras C, et al. Molecular Patterns in Acute Pancreatitis Reflect Generalizable Endo-types of the Host Response to Systemic Injury in Humans[J]. Ann Surg, 2022, 275: e453-e462. doi:  10.1097/SLA.0000000000003974
    [12] Schuurman AR, Reijnders TDY, Van Engelen TSR, et al. The host response in different aetiologies of community-acquired pneumonia[J]. EBioMedicine, 2022, 81: 104082. doi:  10.1016/j.ebiom.2022.104082
    [13] Barbee RW, Reynolds PS, Ward KR. Assessing shock resuscitation strategies by oxygen debt repayment[J]. Shock, 2010, 33: 113-122. doi:  10.1097/SHK.0b013e3181b8569d
    [14] Khellaf A, Khan DZ, Helmy A. Recent advances in traum-atic brain injury[J]. J Neurol, 2019, 266: 2878-2889. doi:  10.1007/s00415-019-09541-4
    [15] Belletti A, Landoni G, Lomivorotov VV, et al. Adrenergic Downregulation in Critical Care: Molecular Mechanisms and Therapeutic Evidence[J]. J Cardiothorac Vasc Anesth, 2020, 34: 1023-1041. doi:  10.1053/j.jvca.2019.10.017
    [16] Rudiger A, Singer M. Decatecholaminisation during sepsis[J]. Crit Care, 2016, 20: 309. doi:  10.1186/s13054-016-1488-x
    [17] Carrara M, Ferrario M, Bollen Pinto B, et al. The autono-mic nervous system in septic shock and its role as a future therapeutic target: a narrative review[J]. Ann Intensive Care, 2021, 11: 80. doi:  10.1186/s13613-021-00869-7
    [18] Tang BM, Feng CG, Mclean AS. Understanding the role of host response in influenza pneumonitis[J]. Intensive Care Med, 2019, 45: 1012-1014. doi:  10.1007/s00134-019-05582-5
    [19] Kellum JA, Pike F, Yealy DM, et al. Relationship Between Alternative Resuscitation Strategies, Host Response and Injury Biomarkers, and Outcome in Septic Shock: Analysis of the Protocol-Based Care for Early Septic Shock Study[J]. Crit Care Med, 2017, 45: 438-445. doi:  10.1097/CCM.0000000000002206
    [20] Chalmers JD, Crichton ML, Goeminne PC, et al. Management of hospitalised adults with coronavirus disease 2019 (COVID-19): a European Respiratory Society living guideline[J]. Eur Respir J, 2021, 57: 2100048. doi:  10.1183/13993003.00048-2021
    [21] Morelli A, Ertmer C, Westphal M, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial[J]. JAMA, 2013, 310: 1683-1691. doi:  10.1001/jama.2013.278477
    [22] Moon JS, Hisata S, Park MA, et al. mTORC1-Induced HK1-Dependent Glycolysis Regulates NLRP3 Inflammasome Activation[J]. Cell Rep, 2015, 12: 102-115. doi:  10.1016/j.celrep.2015.05.046
    [23] Cariou A, Pinsky MR, Monchi M, et al. Is myocardial adrenergic responsiveness depressed in human septic shock?[J]. Intensive Care Med, 2008, 34: 917-922. doi:  10.1007/s00134-008-1022-y
    [24] Schmidt C, Kurt B, Hocherl K, et al. Inhibition of NF-kappaB activity prevents downregulation of alpha1-adrenergic receptors and circulatory failure during CLP-induced sepsis[J]. Shock, 2009, 32: 239-246. doi:  10.1097/SHK.0b013e3181994752
    [25] Elenkov IJ, Wilder RL, Chrousos GP, et al. The sympathe-tic nerve--an integrative interface between two supersystems: the brain and the immune system[J]. Pharmacol Rev, 2000, 52: 595-638.
    [26] Stolk RF, Van Der Pasch E, Naumann F, et al. Norepinephrine Dysregulates the Immune Response and Compro-mises Host Defense during Sepsis[J]. Am J Respir Crit Care Med, 2020, 202: 830-842. doi:  10.1164/rccm.202002-0339OC
    [27] Scanzano A, Cosentino M. Adrenergic regulation of innate immunity: a review[J]. Front Pharmacol, 2015, 6: 171.
    [28] Correa TD, Takala J, Jakob SM. Angiotensin Ⅱ in septic shock[J]. Crit Care, 2015, 19: 98. doi:  10.1186/s13054-015-0802-3
    [29] Lentz SR, Tsiang M, Sadler JE. Regulation of thrombomodulin by tumor necrosis factor-alpha: comparison of transcriptional and posttranscriptional mechanisms[J]. Blood, 1991, 77: 542-550. doi:  10.1182/blood.V77.3.542.542
    [30] Gleeson LE, Sheedy FJ. Metabolic reprogramming & inflammation: Fuelling the host response to pathogens[J]. Semin Immunol, 2016, 28: 450-468. doi:  10.1016/j.smim.2016.10.007
    [31] Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation[J]. Crit Care, 2015, 19: S8. doi:  10.1186/cc14726
    [32] Vincent JL, De Backer D. Circulatory shock[J]. N Engl J Med, 2013, 369: 1726-1734. doi:  10.1056/NEJMra1208943
    [33] Jin Y, Ji W, Yang H, et al. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches[J]. Signal Transduct Target Ther, 2020, 5: 293. doi:  10.1038/s41392-020-00454-7
    [34] Van Vught LA, Wiewel MA, Hoogendijk AJ, et al. The Host Response in Patients with Sepsis Developing Intensive Care Unit-acquired Secondary Infections[J]. Am J Respir Crit Care Med, 2017, 196: 458-470. doi:  10.1164/rccm.201606-1225OC
    [35] Joffre J, Hellman J, Ince C, et al. Endothelial Responses in Sepsis[J]. Am J Respir Crit Care Med, 2020, 202: 361-370. doi:  10.1164/rccm.201910-1911TR
    [36] Uchimido R, Schmidt EP, Shapiro NI. The glycocalyx: a novel diagnostic and therapeutic target in sepsis[J]. Crit Care, 2019, 23: 16. doi:  10.1186/s13054-018-2292-6
    [37] De Backer D, Orbegozo Cortes D, Donadello K, et al. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock[J]. Virulence, 2014, 5: 73-79. doi:  10.4161/viru.26482
    [38] Johansson PI, Stensballe J, Ostrowski SR. Shock induced endotheliopathy (SHINE) in acute critical illness-a unifying pathophysiologic mechanism[J]. Crit Care, 2017, 21: 25. doi:  10.1186/s13054-017-1605-5
    [39] Zhang X, Sun D, Song JW, et al. Endothelial cell dysfunction and glycocalyx-A vicious circle[J]. Matrix Biol, 2018, 71-72: 421-431. doi:  10.1016/j.matbio.2018.01.026
    [40] Goligorsky MS, Sun D. Glycocalyx in Endotoxemia and Sepsis[J]. Am J Pathol, 2020, 190: 791-798. doi:  10.1016/j.ajpath.2019.06.017
    [41] Wilson DF. Oxidative phosphorylation: regulation and role in cellular and tissue metabolism[J]. J Physiol, 2017, 595: 7023-7038. doi:  10.1113/JP273839
    [42] Angus DC, Van Der Poll T. Severe sepsis and septic shock[J]. N Engl J Med, 2013, 369: 840-851. doi:  10.1056/NEJMra1208623
    [43] Abraham E, Singer M. Mechanisms of sepsis-induced organ dysfunction[J]. Crit Care Med, 2007, 35: 2408-2416. doi:  10.1097/01.CCM.0000282072.56245.91
    [44] Cole E, Gillespie S, Vulliamy P, et al. Multiple organ dysfunction after trauma[J]. Br J Surg, 2020, 107: 402-412. doi:  10.1002/bjs.11361
    [45] Beesley SJ, Weber G, Sarge T, et al. Septic Cardiomyopa-thy[J]. Crit Care Med, 2018, 46: 625-634.
    [46] Leibel S, Post M. Endogenous and Exogenous Stem/Progenitor Cells in the Lung and Their Role in the Pathogenesis and Treatment of Pediatric Lung Disease[J]. Front Pediatr, 2016, 4: 36.
    [47] Menon DK, Schwab K, Wright DW, et al. Position statement: definition of traumatic brain injury[J]. Arch Phys Med Rehabil, 2010, 91: 1637-1640. doi:  10.1016/j.apmr.2010.05.017
    [48] Zygun DA, Kortbeek JB, Fick GH, et al. Non-neurologic organ dysfunction in severe traumatic brain injury[J]. Crit Care Med, 2005, 33: 654-660. doi:  10.1097/01.CCM.0000155911.01844.54
    [49] Alobaidi R, Basu RK, Goldstein SL, et al. Sepsis-associated acute kidney injury[J]. Semin Nephrol, 2015, 35: 2-11. doi:  10.1016/j.semnephrol.2015.01.002
    [50] Thongprayoon C, Hansrivijit P, Kovvuru K, et al. Diagnostics, Risk Factors, Treatment and Outcomes of Acute Kidney Injury in a New Paradigm[J]. J Clin Med, 2020, 9: 1104. doi:  10.3390/jcm9041104
    [51] Klingensmith NJ, Coopersmith CM. The Gut as the Motor of Multiple Organ Dysfunction in Critical Illness[J]. Crit Care Clin, 2016, 32: 203-212. doi:  10.1016/j.ccc.2015.11.004
    [52] Vaschetto R, Cammarota G, Colombo D, et al. Effects of propofol on patient-ventilator synchrony and interaction during pressure support ventilation and neurally adjusted ventilatory assist[J]. Crit Care Med, 2014, 42: 74-82. doi:  10.1097/CCM.0b013e31829e53dc
    [53] Geloen A, Chapelier K, Cividjian A, et al. Clonidine and dexmedetomidine increase the pressor response to norepinephrine in experimental sepsis: a pilot study[J]. Crit Care Med, 2013, 41: e431-e438. doi:  10.1097/CCM.0b013e3182986248
    [54] Berkenbosch A, Teppema LJ, Olievier CN, et al. Influences of morphine on the ventilatory response to isocapnic hypoxia[J]. Anesthesiology, 1997, 86: 1342-1349. doi:  10.1097/00000542-199706000-00016
    [55] Koroglu A, Teksan H, Sagir O, et al. A comparison of the sedative, hemodynamic, and respiratory effects of dexmedetomidine and propofol in children undergoing magnetic resonance imaging[J]. Anesth Analg, 2006, 103: 63-67, table of contents. doi:  10.1213/01.ANE.0000219592.82598.AA
    [56] Coutrot M, Dudoignon E, Joachim J, et al. Perfusion index: Physical principles, physiological meanings and clinical implications in anaesthesia and critical care[J]. Anaesth Crit Care Pain Med, 2021, 40: 100964. doi:  10.1016/j.accpm.2021.100964
    [57] Trzeciak S, Cinel I, Phillip Dellinger R, et al. Resuscitat-ing the microcirculation in sepsis: the central role of nitric oxide, emerging concepts for novel therapies, and challenges for clinical trials[J]. Acad Emerg Med, 2008, 15: 399-413. doi:  10.1111/j.1553-2712.2008.00109.x
    [58] Yeh YC, Sun WZ, Ko WJ, et al. Dexmedetomidine pre-vents alterations of intestinal microcirculation that are induced by surgical stress and pain in a novel rat model[J]. Anesth Analg, 2012, 115: 46-53. doi:  10.1213/ANE.0b013e318253631c
    [59] Marik PE. Propofol: an immunomodulating agent[J]. Pharmacotherapy, 2005, 25: 28S-33S. doi:  10.1592/phco.2005.25.5_Part_2.28S
    [60] Zhang Q, Cai S, Guo L, et al. Propofol induces mitochondrial-associated protein LRPPRC and protects mitochondria against hypoxia in cardiac cells[J]. PLoS One, 2020, 15: e0238857. doi:  10.1371/journal.pone.0238857
    [61] Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012[J]. Intensive Care Med, 2013, 39: 165-228. doi:  10.1007/s00134-012-2769-8
    [62] Dunser MW, Hasibeder WR. Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress[J]. J Intensive Care Med, 2009, 24: 293-316. doi:  10.1177/0885066609340519
    [63] Petitjeans F, Geloen A, Pichot C, et al. Is the Sympathetic System Detrimental in the Setting of Septic Shock, with Antihypertensive Agents as a Counterintuitive Approach? A Clinical Proposition[J]. J Clin Med, 2021, 10: 2100048.
    [64] Cioccari L, Luethi N, Bailey M, et al. The effect of dexmedetomidine on vasopressor requirements in patients with septic shock: a subgroup analysis of the Sedation Practice in Intensive Care Evaluation[SPICE Ⅲ] Trial[J]. Crit Care, 2020, 24: 441. doi:  10.1186/s13054-020-03115-x
    [65] Venet F, Cour M, Demaret J, et al. Decreased Monocyte HLA-DR Expression in Patients After Non-Shockable out-of-Hospital Cardiac Arrest[J]. Shock, 2016, 46: 33-36. doi:  10.1097/SHK.0000000000000561
    [66] Uchiba M, Okajima K, Murakami K, et al. Recombinant thrombomodulin prevents endotoxin-induced lung injury in rats by inhibiting leukocyte activation[J]. Am J Physiol, 1996, 271: L470-L475.
    [67] Sanders RD, Hussell T, Maze M. Sedation & immunomodulation[J]. Anesthesiol Clin, 2011, 29: 687-706. doi:  10.1016/j.anclin.2011.09.008
    [68] Marshall JC. Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction syndrome[J]. Crit Care Med, 2001, 29: S99-S106. doi:  10.1097/00003246-200107001-00032
    [69] Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China[J]. N Engl J Med, 2020, 382: 1708-1720. doi:  10.1056/NEJMoa2002032
    [70] Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents[J]. N Engl J Med, 2020, 383: 334-346. doi:  10.1056/NEJMoa2021680
    [71] Ouldali N, Toubiana J, Antona D, et al. Association of Intravenous Immunoglobulins Plus Methylprednisolone vs Immunoglobulins Alone With Course of Fever in Multisystem Inflammatory Syndrome in Children[J]. JAMA, 2021, 325: 855-864. doi:  10.1001/jama.2021.0694
    [72] Sumi C, Okamoto A, Tanaka H, et al. Propofol induces a metabolic switch to glycolysis and cell death in a mitochondrial electron transport chain-dependent manner[J]. PLoS One, 2018, 13: e0192796. doi:  10.1371/journal.pone.0192796
  • 加载中
计量
  • 文章访问数:  2070
  • HTML全文浏览量:  459
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-28
  • 录用日期:  2022-10-10
  • 网络出版日期:  2022-11-01
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!