留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

器官血流动力学新认知:动脉-灌注-静脉

赵华 王小亭 刘大为

赵华, 王小亭, 刘大为. 器官血流动力学新认知:动脉-灌注-静脉[J]. 协和医学杂志, 2022, 13(6): 921-928. doi: 10.12290/xhyxzz.2022-0475
引用本文: 赵华, 王小亭, 刘大为. 器官血流动力学新认知:动脉-灌注-静脉[J]. 协和医学杂志, 2022, 13(6): 921-928. doi: 10.12290/xhyxzz.2022-0475
ZHAO Hua, WANG Xiaoting, LIU Dawei. New Cognition of Organ Hemodynamics: Artery-Perfusion-Vein[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 921-928. doi: 10.12290/xhyxzz.2022-0475
Citation: ZHAO Hua, WANG Xiaoting, LIU Dawei. New Cognition of Organ Hemodynamics: Artery-Perfusion-Vein[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 921-928. doi: 10.12290/xhyxzz.2022-0475

器官血流动力学新认知:动脉-灌注-静脉

doi: 10.12290/xhyxzz.2022-0475
基金项目: 

北京市科技计划 Z201100005520038

详细信息
    通讯作者:

    刘大为, E-mail: dwliu98@163.com

  • 中图分类号: R441.9

New Cognition of Organ Hemodynamics: Artery-Perfusion-Vein

Funds: 

Beijing Municipal Science and Technology Project Z201100005520038

More Information
  • 摘要: 重症患者器官血流动力学改变是导致器官功能受损的核心。器官灌注压是保证器官血流的直接动力,受到入器官压力(动脉端的压力)和出器官压力(静脉端压力)的影响。不同器官对血流的调整有独特的灌注压力需求和调节系统,以匹配自身生理需求。动脉端作为器官灌注的供给侧,主要通过灌注压力和调节系统以保证器官的血流。自主调节能力不同的器官对于动脉灌注压的需求并不完全相同,临床应根据相应的自主调节范围寻找合适的动脉端灌注压。器官血流灌注不仅取决于供给侧,还受静脉回流的影响,重要器官的动静脉梯度改变可影响器官血流灌注。此外,由于距离心脏远近不同以及受器官自身特异性的影响,不同器官对于静脉回流障碍的耐受程度不完全一致。临床进行血流动力学干预时,应关注不同压力变化对器官灌注的影响,进而真正实现重症治疗器官化。
    作者贡献:赵华负责文献收集、分析和论文撰写; 王小亭负责论文段落构架、文献分析和论文修订; 刘大为负责选题设计,论文修订和终审定稿。
    利益冲突:所有作者均声明不存在利益冲突
  • 图  1  肝静脉三相波

    图  2  门静脉多普勒血流图

    A.连续性单相波动; B.轻微波动; C.“脉动”波形; D.双相波动

    图  3  肾静脉多普勒血流图

    A.连续波动; B.双相不连续波动; C.单向不连续波动

  • [1] 刘大为. 重症治疗: 群体化、个体化、器官化[J]. 中华内科杂志, 2019, 58: 336-341. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHNK200711002.htm
    [2] Meng L, Wang Y, Zhang L, et al. Heterogeneity and variability in pressure autoregulation of organ blood flow: lessons learned over 100+ years[J]. Crit Care Med, 2019, 47: 436-448.
    [3] Aronson S, Stafford-Smith M, Phillips-Bute B, et al. Car diothoracic Anesthesiology Research Endeavors: Intraoperative systolic blood pressure variability predicts 30-day mortality in aortocoronary bypass surgery patients[J]. Anesthesiology, 2010, 113: 305-312. doi:  10.1097/ALN.0b013e3181e07ee9
    [4] Hirsch J, De Palma G, Tsai TT, et al. Impact of intraoperative hypotension and blood pressure fluctuations on early postoperative delirium after non-cardiac surgery[J]. Br J Anaesth, 2015, 115: 418-426. doi:  10.1093/bja/aeu458
    [5] Mascha EJ, Yang D, Weiss S, et al. Intraoperative mean arterial pressure variability and 30-day mortality in patients having noncardiac surgery[J]. Anesthesiology, 2015, 123: 79-91. doi:  10.1097/ALN.0000000000000686
    [6] Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregu-lation[J]. Cerebrovasc Brain Metab Rev, 1990, 2: 161-192.
    [7] Griffiths IR. Spinal cord blood flow in dogs: The effect of blood pressure[J]. J Neurol Neurosurg Psychiatry, 1973, 36: 914-920. doi:  10.1136/jnnp.36.6.914
    [8] Jeremy RW, Fletcher PJ, Thompson J. Coronary pressure-flow relations in hypertensive left ventricular hypertrophy. Comparison of intact autoregulation with physiological and pharmacological vasodilation in the dog[J]. Circ Res, 1989, 65: 224-236. doi:  10.1161/01.RES.65.1.224
    [9] Carlström M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease[J]. Physiol Rev, 2015, 95: 405-511. doi:  10.1152/physrev.00042.2012
    [10] Stainsby WN, Renkin EM. Autoregulation of blood flow in resting skeletal muscle[J]. Am J Physiol, 1961, 201: 117-122. doi:  10.1152/ajplegacy.1961.201.1.117
    [11] Takala J. Determinants of splanchnic blood flow[J]. Br J Anaesth, 1996, 77: 50-58. doi:  10.1093/bja/77.1.50
    [12] Kvietys PR, Miller T, Granger DN. Intrinsic control of colonic blood flow and oxygenation[J]. Am J Physiol, 1980, 238: G478-G484.
    [13] Nakano M, Nomura Y, Whitman G, et al. Cerebral autoregu-lation in the operating room and intensive care unit after cardiac surgery[J]. Br J Anaesth, 2021, 126: 967-974. doi:  10.1016/j.bja.2020.12.043
    [14] Ono M, Arnaoutakis GJ, Fine DM, et al. Blood pressure excursions below the cerebral autoregulation threshold during cardiac surgery are associated with acute kidney injury[J]. Crit Care Med, 2013, 41: 464-471. doi:  10.1097/CCM.0b013e31826ab3a1
    [15] Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis compaign: international guidelines for management of sepsis and septic shock 2021[J]. Intensive Care Med, 2021, 47: 1181-1247. doi:  10.1007/s00134-021-06506-y
    [16] Aaslid R, Lindegaard KF, Sorteberg W, et al. Cerebral autoregulation dynamics in humans[J]. Stroke, 1989, 20: 45-52. doi:  10.1161/01.STR.20.1.45
    [17] Depreitere B, MeyfroidtG, Guiza F, et al. What do we mean by cerebral perfusion pressure?[J]. Acta Neurochir Suppl, 2018, 126: 201-203.
    [18] Asfar P, Meziani F, Hamel JF, et al. High versus low blood-pressure target in patients with septic shock[J]. N Engl J Med, 2014, 370: 1583-1593. doi:  10.1056/NEJMoa1312173
    [19] Grenier N, Cornelis F, Le Bras Y, et al. Perfusion imaging in renal diseases[J]. Diagn Interv Imaging, 2013, 94: 1313-1322. doi:  10.1016/j.diii.2013.08.018
    [20] Beloncle F, Rousseau N, Hamel JF, et al. Determinants of Doppler-based renal resistive index in patients with septic shock: impact of hemodynamic parameters, acute kidney injury and predisposing factors[J]. Ann Intensive Care, 2019, 9: 51. doi:  10.1186/s13613-019-0525-8
    [21] Rhee CJ, Kibler KK, Easley RB, et al. Renovascular reactivity measured by near-infrared spectroscopy[J]. J Appl Physiol, 2012, 113: 307-314. doi:  10.1152/japplphysiol.00024.2012
    [22] Post EH, Vincent JL. Renal autoregulation and blood pressure management in circulatory shock[J]. Crit Care, 2018, 22: 81. doi:  10.1186/s13054-018-1962-8
    [23] Nygren A, Thoren A, Ricksten SE. Norepinephrine and intestinal mucosal perfusion in vasodilatory shock after cardiac surgery[J]. Shock, 2007, 28: 536-543. doi:  10.1097/shk.0b013e318063e71f
    [24] Hiltebrand LB, Krejci V, tenHoevel ME, et al. Redistribu-tion of microcirculatory blood flow within the intestinal wall during sepsis and general anesthesia[J]. Anesthesiology, 2003, 98: 658-669. doi:  10.1097/00000542-200303000-00014
    [25] Leithe ME, Margorien RD, Hermiller JB, et al. Relation-ship between central hemodynamics and regional blood flow in normal subjects and in patients with congestive heart failure[J]. Circulation, 1984, 69: 57-64. doi:  10.1161/01.CIR.69.1.57
    [26] Wong A, Yusuf GT, Malbrain MLNG. Future developments in the imaging of the gastrointestinal tract: the role of ultrasound[J]. Curr Opin Crit Care, 2021, 27: 147-156. doi:  10.1097/MCC.0000000000000815
    [27] Guinot PG, Abou-Arab O, Longrois D, et al. Right ventricu-lar systolic dysfunction and vena cava dilatation precede alteration of renal function in adult patients undergoing cardiac surgery: An observational study[J]. Eur J Anaesthesiol, 2015, 32: 535-542. doi:  10.1097/EJA.0000000000000149
    [28] 刘大为, 王小亭, 张宏民, 等. 重症血流动力学治疗——北京共识[J]. 中华内科杂志, 2015, 54: 248-271. doi:  10.3760/cma.j.issn.0578-1426.2015.03.021
    [29] Tang WH, Kitai T. Intrarenal Venous Flow: A Window Into the Congestive Kidney Failure Phenotype of Heart Failure?[J]. JACC Heart Failure, 2016, 4: 683-686. doi:  10.1016/j.jchf.2016.05.009
    [30] Desser TS, Sze DY, Jeffrey RB. Imaging and Intervention in the Hepatic Veins[J]. AJR Am J Roentgenol, 2003, 180: 1583-1591. doi:  10.2214/ajr.180.6.1801583
    [31] Xanthopoulos A, Starling RC, Kitai T, et al. Heart Failure and Liver Disease: Cardiohepatic Interactions[J]. JACC Heart Fail, 2019, 7: 87-97. doi:  10.1016/j.jchf.2018.10.007
    [32] Pettey G, Hermansen JL, Nel S, et al. Ultrasound Hepatic Vein Ratios Are Associated With the Development of Acute Kidney Injury After Cardiac Surgery[J]. J Cardiothoracic Vasc Anesth, 2022, 36: 1326-1335. doi:  10.1053/j.jvca.2021.07.039
    [33] Eljaiek R, Cavayas YA, Rodrigue E, et al. High postoperative portal venous flow pulsatility indicates right ventricular dysfunction and predicts complications in cardiac surgery patients[J]. Br J Anaesth, 2019, 122: 206-214. doi:  10.1016/j.bja.2018.09.028
    [34] Styczynski G, Milewska A, Marczewska M, et al. Echocardiographic Correlates of Abnormal Liver Tests in Patients with Exacerbation of Chronic Heart Failure[J]. J Am Soc Echocardiogr, 2016, 29: 132-139. doi:  10.1016/j.echo.2015.09.012
    [35] Denault AY, Beaubien-Souligny W, Elmi-Sarabi M, et al. Clinical Significance of Portal Hypertension Diagnosed With Bedside Ultrasound After Cardiac Surgery[J]. Anesth Analg, 2017, 124: 1109-1115. doi:  10.1213/ANE.0000000000001812
    [36] Husain-Syed F, Birk HW, Ronco C, et al. Doppler-Derived Renal Venous Stasis Index in the Prognosis of Right Heart Failure[J]. J Am Heart Assoc, 2019, 8: e013584. doi:  10.1161/JAHA.119.013584
    [37] Beaubien-Souligny W, Denault AY. Real-Time Assessment of Renal Venous Flow by Transesophageal Echography During Cardiac Surgery[J]. A A Pract, 2019, 12: 30-32. doi:  10.1213/XAA.0000000000000841
    [38] Ter Maaten JM, Dauw J, Martens P, et al. The Effect of Decongestion on Intrarenal Venous Flow Patterns in Patients With Acute Heart Failure[J]. J Card Fail, 2021, 27: 29-34. doi:  10.1016/j.cardfail.2020.09.003
    [39] Beaubien-Souligny W, Rola P, Haycock K, et al. Quantifying systemic congestion with Point-Of-Care ultrasound: development of the venous excess ultrasound grading system[J]. Ultrasound J, 2020, 12: 16. doi:  10.1186/s13089-020-00163-w
    [40] Spiegel R, Teeter W, Sullivan S, et al. The use of venous Doppler to predict adverse kidney events in a general ICU cohort[J]. Crit Care, 2020, 24: 615. doi:  10.1186/s13054-020-03330-6
    [41] Beaubien-Souligny W, Eljaiek R, Fortier A, et al. The Association Between Pulsatile Portal Flow and Acute Kidney Injury after Cardiac Surgery: A Retrospective Cohort Study[J]. J Cardiothoracic Vasc Anesth, 2018, 32: 1780-1787. doi:  10.1053/j.jvca.2017.11.030
    [42] Bhardwaj V, Vikneswaran G, Rola P, et al. Combination of Inferior Vena Cava Diameter, Hepatic Venous Flow, and Portal Vein Pulsatility Index: Venous Excess Ultrasound Score (VEXUS Score) in Predicting Acute Kidney Injury in Patients with Cardiorenal Syndrome: A Prospective Cohort Study[J]. Indian J Crit Care Med, 2020, 24: 783-789. doi:  10.5005/jp-journals-10071-23570
  • 加载中
图(3)
计量
  • 文章访问数:  2754
  • HTML全文浏览量:  1017
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-25
  • 录用日期:  2022-10-10
  • 网络出版日期:  2022-10-29
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!