留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

犬尿喹啉酸在肠易激综合征中的作用机制

陆锦南 赵春华 闵寒

陆锦南, 赵春华, 闵寒. 犬尿喹啉酸在肠易激综合征中的作用机制[J]. 协和医学杂志, 2023, 14(2): 353-358. doi: 10.12290/xhyxzz.2022-0424
引用本文: 陆锦南, 赵春华, 闵寒. 犬尿喹啉酸在肠易激综合征中的作用机制[J]. 协和医学杂志, 2023, 14(2): 353-358. doi: 10.12290/xhyxzz.2022-0424
LU Jinnan, ZHAO Chunhua, MIN Han. Mechanism of Action of Kynurenic Acid in Irritable Bowel Syndrome[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 353-358. doi: 10.12290/xhyxzz.2022-0424
Citation: LU Jinnan, ZHAO Chunhua, MIN Han. Mechanism of Action of Kynurenic Acid in Irritable Bowel Syndrome[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 353-358. doi: 10.12290/xhyxzz.2022-0424

犬尿喹啉酸在肠易激综合征中的作用机制

doi: 10.12290/xhyxzz.2022-0424
基金项目: 

苏州市姑苏卫生人才科研项目 GSWS2021041

南京医科大学姑苏学院科研项目 GSKY20210401

苏州市科技局民生科技指导性项目 SYSD2020140

详细信息
    通讯作者:

    闵寒, E-mail: minhan1981@163.com

  • 中图分类号: R574.4

Mechanism of Action of Kynurenic Acid in Irritable Bowel Syndrome

Funds: 

Suzhou Gusu Health Talents Scientific Research Project GSWS2021041

The Research Project of Gusu School of Nanjing Medical University GSKY20210401

The Scientific and Technological Program of Suzhou SYSD2020140

More Information
  • 摘要: 肠易激综合征(irritable bowel syndrome,IBS) 是一种常见的肠道功能紊乱性疾病,以持续或间歇性腹痛及排便习惯改变为主要临床表现,常伴有焦虑、抑郁等精神症状,严重影响患者生活质量。目前,IBS的病因及发病机制尚不明确,现有研究表明IBS是由内脏感觉异常、肠道感染与炎症反应、肠道菌群失调、社会心理等多种因素共同作用的结果。近期研究表明IBS患者中存在肠道菌群-犬尿氨酸(kynurenine, KYN)代谢紊乱,且KYN代谢产物犬尿喹啉酸(kynurenic acid,KA)与炎症反应、疼痛刺激及心理症状相关,在IBS中可能起到抗炎、缓解疼痛等保护性作用,有望成为诊断和治疗IBS的新方法。本文就KYN代谢途径及其代谢产物KA在IBS中的作用机制作一综述,以期为临床相关专业人员提供参考和借鉴。
    作者贡献:陆锦南负责文献检索及论文撰写;赵春华、闵寒负责论文写作指导及修订。
    利益冲突:所有作者均声明不存在利益冲突
  • 图  1  KA调节IBS的潜在作用机制

    TPH:色氨酸羟化酶;5-HT:5-羟色胺;IDO:吲哚胺2,3-双加氧酶;TLR:Toll样受体;LPS:脂多糖;SCFAs:短链脂肪酸;H2O2:过氧化氢;AA:邻氨基苯甲酸;QA:喹啉酸;KYN:犬尿氨酸;KMO:犬尿氨酸-3-单加氧酶;KAT:犬尿氨酸转氨酶;KA:犬尿喹啉酸;NMDAR:N-甲基-D-天门冬氨酸受体;IL:白细胞介素;HNP1-3:人中性粒细胞防御素1-3;TNF-α:肿瘤坏死因子-α;AMPAR:α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体;α7-nAChR:α7-烟碱型乙酰胆碱受体;IBS:肠易激综合征

  • [1] 中华医学会消化病学分会胃肠功能性疾病协作组, 中华医学会消化病学分会胃肠动力学组. 2020年中国肠易激综合征专家共识意见[J]. 中华消化杂志, 2020, 40: 803-818. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLYS202110007.htm
    [2] Yildiz A, Kizil E, Yildiz A. Quality of life and psychometric evaluation of patients diagnosed with irritable bowel syndrome: an observational cohort study[J]. Sao Paulo Med J, 2020, 138: 282-286. doi:  10.1590/1516-3180.2019.0527.r1.16042020
    [3] Ford AC, Sperber AD, Corsetti M, et al. Irritable bowel syndrome[J]. Lancet, 2020, 396: 1675-1688. doi:  10.1016/S0140-6736(20)31548-8
    [4] 黄丹, 梁列新, 方秀才, 等. 精神心理因素对腹泻型肠易激综合征患者生命质量的影响[J]. 中华消化杂志, 2015, 35: 599-605.
    [5] 叶华, 于丰彦, 黄绍刚, 等. 腹泻型肠易激综合征患者的内脏敏感性与色氨酸代谢通路的相关性研究[J]. 胃肠病学, 2016, 21: 719-723. https://www.cnki.com.cn/Article/CJFDTOTAL-WIEC201612006.htm
    [6] Li P, Zheng J, Bai Y, et al. Characterization of kynurenine pathway in patients with diarrhea-predominant irritable bowel syndrome[J]. Eur J Histochem, 2020, 64: 3132.
    [7] Bosi A, Banfi D, Bistoletti M, et al. Tryptophan metabolites along the microbiota-gut-brain axis: an interkingdom communication system influencing the gut in health and disease[J]. Int J Tryptophan Res, 2020, 13: 1178646920928984.
    [8] Kennedy PJ, Cryan JF, Dinan TG, et al. Kynurenine pathway metabolism and the microbiota-gut-brain axis[J]. Neuropharmacology, 2017, 112: 399-412. doi:  10.1016/j.neuropharm.2016.07.002
    [9] Mishima Y, Ishihara S. Enteric Microbiota-Mediated Serotonergic Signaling in Pathogenesis of Irritable Bowel Syndrome[J]. Int J Mol Sci, 2021, 22: 10235. doi:  10.3390/ijms221910235
    [10] Vasant DH, Paine PA, Black CJ, et al. British Society of Gastroenterology guidelines on the management of irritable bowel syndrome[J]. Gut, 2021, 70: 1214-1240. doi:  10.1136/gutjnl-2021-324598
    [11] Ala M. Tryptophan metabolites modulate inflammatory bowel disease and colorectal cancer by affecting immune system[J]. Int Rev Immunol, 2022, 41: 326-345. doi:  10.1080/08830185.2021.1954638
    [12] Maëva M, Elodie B, Nathalie R, et al. AhR/IL-22 pathway as new target for the treatment of post-infectious irritable bowel syndrome symptoms[J]. Gut Microbes, 2022, 14: 2022997. doi:  10.1080/19490976.2021.2022997
    [13] Luo M, Zhuang X, Tian Z, et al. Alterations in short-chain fatty acids and serotonin in irritable bowel syndrome: a systematic review and meta-analysis[J]. BMC Gastroenterol, 2021, 21: 14. doi:  10.1186/s12876-020-01577-5
    [14] Clarke G, Fitzgerald P, Cryan JF, et al. Tryptophan degradation in irritable bowel syndrome: evidence of indoleamine 2, 3-dioxygenase activation in a male cohort[J]. BMC gastroenterol, 2009, 9: 6. doi:  10.1186/1471-230X-9-6
    [15] Hestad K, Alexander J, Rootwelt H, et al. The Role of Tryptophan Dysmetabolism and Quinolinic Acid in Depres-sive and Neurodegenerative Diseases[J]. Biomolecules, 2022, 12: 998. doi:  10.3390/biom12070998
    [16] Chen LM, Bao CH, Wu Y, et al. Tryptophan-kynurenine metabolism: a link between the gut and brain for depression in inflammatory bowel disease[J]. J Neuroinflammation, 2021, 18: 135. doi:  10.1186/s12974-021-02175-2
    [17] Klem F, Wadhwa A, Prokop LJ, et al. Prevalence, risk factors, and outcomes of irritable bowel syndrome after infectious enteritis: a systematic review and meta-analysis[J]. Gastroenterology, 2017, 152: 1042-1054. doi:  10.1053/j.gastro.2016.12.039
    [18] Barbara G, Barbaro MR, Fuschi D, et al. Inflammatory and microbiota-related regulation of the intestinal epithelial barrier[J]. Front Nutr, 2021, 8: 718356. doi:  10.3389/fnut.2021.718356
    [19] González-Castro AM, Martínez C, Salvo-Romero E, et al. Mucosal pathobiology and molecular signature of epithelial barrier dysfunction in the small intestine in irritable bowel syndrome[J]. J Gastroenterol Hepatol, 2017, 32: 53-63.
    [20] Gaffen SL, Jain R, Garg AV, et al. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing[J]. Nat Rev Immunol, 2014, 14: 585-600. doi:  10.1038/nri3707
    [21] Tiszlavicz Z, Németh B, Fülöp F, et al. Different inhibitory effects of kynurenic acid and a novel kynurenic acid analogue on tumour necrosis factor-α (TNF-α) production by mononuclear cells, HMGB1 production by monocytes and HNP1-3 secretion by neutrophils[J]. Naunyn Schmiedebergs Arch Pharmacol, 2011, 383: 447-455. doi:  10.1007/s00210-011-0605-2
    [22] Mándi Y, Endrész V, Mosolygó T, et al. The opposite effects of kynurenic acid and different kynurenic acid analogs on tumor necrosis factor-α (TNF-α) production and tumor necrosis factor-stimulated gene-6 (TSG-6) expression[J]. Front Immunol, 2019, 10: 1406. doi:  10.3389/fimmu.2019.01406
    [23] Kaszaki J, Palásthy Z, Erczes D, et al. Kynurenic acid inhibits intestinal hypermotility and xanthine oxidase activity during experimental colon obstruction in dogs[J]. Neurogastroenterol Motil, 2008, 20: 53-62.
    [24] Moroni F, Fossati S, Chiarugi A, et al. Kynurenic acid actions in brain and periphery[J]. Int congr ser, 2007, 1304: 305-313. doi:  10.1016/j.ics.2007.07.016
    [25] Kiank C, Zeden JP, Drude S, et al. Psychological stress-induced, IDO1-dependent tryptophan catabolism: implications on immunosuppression in mice and humans[J]. PLoS One, 2010, 5: e11825. doi:  10.1371/journal.pone.0011825
    [26] Ferreira FS, Schmitz F, Marques EP, et al. Intrastriatal quinolinic acid administration impairs redox homeostasis and induces inflammatory changes: prevention by kynurenic acid[J]. Neurotox Res, 2020, 38: 50-58. doi:  10.1007/s12640-020-00192-2
    [27] Guillemin GJ. Quinolinic acid, the inescapable neurotoxin[J]. FEBS J, 2012, 279: 1356-1365. doi:  10.1111/j.1742-4658.2012.08485.x
    [28] Filpa V, Moro E, Protasoni M, et al. Role of glutamatergic neurotransmission in the enteric nervous system and brain-gut axis in health and disease[J]. Neuropharmacology, 2016, 111: 14-33. doi:  10.1016/j.neuropharm.2016.08.024
    [29] McRoberts JA, Coutinho SV, Marvizón JC, et al. Role of peripheral N-methyl-D-aspartate (NMDA) receptors in visceral nociception in rats[J]. Gastroenterology, 2001, 120: 1737-1748. doi:  10.1053/gast.2001.24848
    [30] Majláth Z, Török N, Toldi J, et al. Memantine and kynurenic acid: current neuropharmacological aspects[J]. Curr Neuropharmacol, 2016, 14: 200-209. doi:  10.2174/1570159X14666151113123221
    [31] Ciapała K, Mika J, Rojewska E. The kynurenine pathway as a potential target for neuropathic pain therapy design: from basic research to clinical perspectives[J]. Int J Mol Sci, 2021, 22: 11055. doi:  10.3390/ijms222011055
    [32] Ghasemi M, Phillips C, Trillo L, et al. The role of NMDA receptors in the pathophysiology and treatment of mood disorders[J]. Neurosci Biobehav Rev, 2014, 47: 336-358. doi:  10.1016/j.neubiorev.2014.08.017
    [33] Cao B, Zhu J, Zuckerman H, et al. Pharmacological interventions targeting anhedonia in patients with major depressive disorder: a systematic review[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2019, 92: 109-117. doi:  10.1016/j.pnpbp.2019.01.002
    [34] Zanos P, Piantadosi SC, Wu HQ, et al. The prodrug 4-chlorokynurenine causes ketamine-like antidepressant effects, but not side effects, by NMDA/glycineB-site inhibition[J]. J Pharmacol Exp Ther, 2015, 355: 76-85. doi:  10.1124/jpet.115.225664
    [35] Tan HL, Chiu SL, Zhu Q, et al. GRIP1 regulates synaptic plasticity and learning and memory[J]. Proc Natl Acad Sci USA, 2020, 117: 25085-25091. doi:  10.1073/pnas.2014827117
    [36] Li Y, Cheng X, Liu X, et al. Treatment of Cerebral Ischemia Through NMDA Receptors: Metabotropic Signaling and Future Directions[J]. Front Pharmacol, 2022, 13: 831181. doi:  10.3389/fphar.2022.831181
    [37] Rodiño-Janeiro BK, Vicario M, Alonso-Cotoner C, et al. A Review of Microbiota and Irritable Bowel Syndrome: Future in Therapies[J]. Adv Ther, 2018, 35: 289-310. doi:  10.1007/s12325-018-0673-5
    [38] Johnsen PH, Hilpüsch F, Cavanagh JP, et al. Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomised, placebo-controlled, parallel-group, single-centre trial[J]. Lancet Gastroenterol Hepatol, 2018, 3: 17-24. doi:  10.1016/S2468-1253(17)30338-2
    [39] Shariati A, Fallah F, Pormohammad A, et al. The possible role of bacteria, viruses, and parasites in initiation and exacerbation of irritable bowel syndrome[J]. J Cell Physiol, 2019, 234: 8550-8569. doi:  10.1002/jcp.27828
    [40] Duan R, Zhu S, Wang B, et al. Alterations of Gut Microbiota in Patients With Irritable Bowel Syndrome Based on 16S rRNA-Targeted Sequencing: A Systematic Review[J]. Clin Transl Gastroenterol, 2019, 10: e00012. doi:  10.14309/ctg.0000000000000012
    [41] Carabotti M, Scirocco A, Maselli MA, et al. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems[J]. Ann Gastroenterol, 2015, 28: 203-209.
    [42] Kelly JR, Borre Y, O'Brien C, et al. Transferring the blues: depression-associated gut microbiota induces neurobehavi-oural changes in the rat[J]. J Psychiatr Res, 2016, 82: 109-118. doi:  10.1016/j.jpsychires.2016.07.019
    [43] Marin IA, Goertz JE, Ren T, et al. Microbiota alteration is associated with the development of stress-induced despair behavior[J]. Sci Rep, 2017, 7: 43859. doi:  10.1038/srep43859
    [44] Valladares R, Bojilova L, Potts AH, et al. Lactobacillus johnsonii inhibits indoleamine 2, 3-dioxygenase and alters tryptophan metabolite levels in BioBreeding rats[J]. FASEB J, 2013, 27: 1711-1720. doi:  10.1096/fj.12-223339
    [45] Desbonnet L, Garrett L, Clarke G, et al. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat[J]. J Psychiatr Res, 2008, 43: 164-174. doi:  10.1016/j.jpsychires.2008.03.009
    [46] Rudzki L, Ostrowska L, Pawlak D, et al. Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: A double-blind, randomized, placebo controlled study[J]. Psychoneuroendocrinology, 2019, 100: 213-222. doi:  10.1016/j.psyneuen.2018.10.010
    [47] Tomás MS, Claudia Otero M, Ocaña V, et al. Production of antimicrobial substances by lactic acid bacteria I: determination of hydrogen peroxide[J]. Methods Mol Biol, 2004, 268: 337-346.
    [48] Wang Y, Devkota S, Musch MW, et al. Regional mucosa-associated microbiota determine physiological expression of TLR2 and TLR4 in murine colon[J]. PLoS One, 2010, 5: e13607. doi:  10.1371/journal.pone.0013607
    [49] Orhan F, Bhat M, Sandberg K, et al. Tryptophan Metabolism Along the Kynurenine Pathway Downstream of Toll-like Receptor Stimulation in Peripheral Monocytes[J]. Scand J Immunol, 2016, 84: 262-271. doi:  10.1111/sji.12479
    [50] Martin-Gallausiaux C, Larraufie P, Jarry A, et al. Butyrate produced by commensal bacteria down-regulates indolamine 2, 3-dioxygenase 1 (IDO-1) expression via a dual mechan-ism in human intestinal epithelial cells[J]. Front Immunol, 2018, 9: 2838. doi:  10.3389/fimmu.2018.02838
  • 加载中
图(1)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  71
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-03
  • 录用日期:  2022-09-05
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!