留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肠道菌群代谢产物在自身免疫性疾病中的作用

姜旭 杨华夏 张奉春

姜旭, 杨华夏, 张奉春. 肠道菌群代谢产物在自身免疫性疾病中的作用[J]. 协和医学杂志, 2022, 13(5): 747-752. doi: 10.12290/xhyxzz.2022-0246
引用本文: 姜旭, 杨华夏, 张奉春. 肠道菌群代谢产物在自身免疫性疾病中的作用[J]. 协和医学杂志, 2022, 13(5): 747-752. doi: 10.12290/xhyxzz.2022-0246
JIANG Xu, YANG Huaxia, ZHANG Fengchun. The Role of the Gut Microbial Metabolites in Autoimmune Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 747-752. doi: 10.12290/xhyxzz.2022-0246
Citation: JIANG Xu, YANG Huaxia, ZHANG Fengchun. The Role of the Gut Microbial Metabolites in Autoimmune Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 747-752. doi: 10.12290/xhyxzz.2022-0246

肠道菌群代谢产物在自身免疫性疾病中的作用

doi: 10.12290/xhyxzz.2022-0246
基金项目: 

中国医学科学院医学与健康科技创新工程 2020-I2M-C & T-B-011

中国医学科学院医学与健康科技创新工程 2021-I2M-1-016

国家自然科学基金 82171799

详细信息
    通讯作者:

    杨华夏, E-mail: yanghuaxia2013@163.com

  • 中图分类号: R378; R593

The Role of the Gut Microbial Metabolites in Autoimmune Diseases

Funds: 

CAMS Innovation Fund for Medical Sciences 2020-I2M-C & T-B-011

CAMS Innovation Fund for Medical Sciences 2021-I2M-1-016

National Natural Science Foundation of China 82171799

More Information
  • 摘要: 肠道菌群及其代谢产物在维持宿主免疫稳态方面具有重要作用,肠道菌群紊乱及代谢产物异常与多种自身免疫疾病的发生发展密切相关。肠道菌群代谢产物中,短链脂肪酸、色氨酸及其衍生物、胆汁酸的研究最为广泛。本文将重点阐述肠道菌群代谢产物的形成途径、对免疫应答的影响及与自身免疫性疾病的关联等,解析其在自身免疫疾病中的作用。
    作者贡献:姜旭负责查阅文献、撰写论文;杨华夏负责修订论文;张奉春负责终审定稿。
    利益冲突:所有作者均声明不存在利益冲突
  • [1] Maynard CL, Elson CO, Hatton RD, et al. Reciprocal interactions of the intestinal microbiota and immune system[J]. Nature, 2012, 489: 231-241. doi:  10.1038/nature11551
    [2] Zhang X, Chen BD, Zhao LD, et al. The Gut Microbiota: Emerging Evidence in Autoimmune Diseases[J]. Trends Mol Med, 2020, 26: 862-873. doi:  10.1016/j.molmed.2020.04.001
    [3] Zhang X, Zhang D, Jia H, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment[J]. Nat Med, 2015, 21: 895-905. doi:  10.1038/nm.3914
    [4] Alpizar-Rodriguez D, Lesker TR, Gronow A, et al. Prevotella copri in individuals at risk for rheumatoid arthritis[J]. Ann Rheum Dis, 2019, 78: 590-593. doi:  10.1136/annrheumdis-2018-214514
    [5] Azzouz D, Omarbekova A, Heguy A, et al. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal[J]. Ann Rheum Dis, 2019, 78: 947-956. doi:  10.1136/annrheumdis-2018-214856
    [6] Chen BD, Jia XM, Xu JY, et al. An Autoimmunogenic and Proinflammatory Profile Defined by the Gut Microbiota of Patients With Untreated Systemic Lupus Erythematosus[J]. Arthritis Rheumatol, 2021, 73: 232-243.
    [7] Halfvarson J, Brislawn CJ, Lamendella R, et al. Dynamics of the human gut microbiome in inflammatory bowel disease[J]. Nat Microbiol, 2017, 2: 17004. doi:  10.1038/nmicrobiol.2017.4
    [8] Tang R, Wei Y, Li Y, et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy[J]. Gut, 2018, 67: 534-541. doi:  10.1136/gutjnl-2016-313332
    [9] Jangi S, Gandhi R, Cox LM, et al. Alterations of the human gut microbiome in multiple sclerosis[J]. Nat Commun, 2016, 7: 12015. doi:  10.1038/ncomms12015
    [10] Wen C, Zheng Z, Shao T, et al. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis[J]. Genome Biol, 2017, 18: 142. doi:  10.1186/s13059-017-1271-6
    [11] Zhou C, Zhao H, Xiao XY, et al. Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis[J]. J Autoimmun, 2020, 107: 102360. doi:  10.1016/j.jaut.2019.102360
    [12] Mandl T, Marsal J, Olsson P, et al. Severe intestinal dysbiosis is prevalent in primary Sjögren's syndrome and is associated with systemic disease activity[J]. Arthritis Res Ther, 2017, 19: 237. doi:  10.1186/s13075-017-1446-2
    [13] Ye Z, Zhang N, Wu C, et al. A metagenomic study of the gut microbiome in Behcet's disease[J]. Microbiome, 2018, 6: 135. doi:  10.1186/s40168-018-0520-6
    [14] Schroeder BO. Fight them or feed them: how the intestinal mucus layer manages the gut microbiota[J]. Gastroenterol Rep (Oxf), 2019, 7: 3-12. doi:  10.1093/gastro/goy052
    [15] Nastasi C, Candela M, Bonefeld CM, et al. The effect of short-chain fatty acids on human monocyte-derived dendritic cells[J]. Sci Rep, 2015, 5: 16148. doi:  10.1038/srep16148
    [16] Schulthess J, Pandey S, Capitani M. et al. The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages[J]. Immunity, 2019, 50: 432-445. e7. doi:  10.1016/j.immuni.2018.12.018
    [17] Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2013, 504: 446-450. doi:  10.1038/nature12721
    [18] Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341: 569-573. doi:  10.1126/science.1241165
    [19] Wu W, Sun M, Chen F, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43[J]. Mucosal Immunol, 2017, 10: 946-956. doi:  10.1038/mi.2016.114
    [20] Sun M, Wu W, Chen L, et al. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis[J]. Nat Commun, 2018, 9: 3555. doi:  10.1038/s41467-018-05901-2
    [21] Bachem A, Makhlouf C, Binger KJ, et al. Microbiota-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8(+) T Cells[J]. Immunity, 2019, 51: 285-297. e5. doi:  10.1016/j.immuni.2019.06.002
    [22] Yang W, Yu T, Huang X, et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity[J]. Nat Commun, 2020, 11: 4457. doi:  10.1038/s41467-020-18262-6
    [23] Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota[J]. Nature, 2013, 500: 232-236. doi:  10.1038/nature12331
    [24] Rosser EC, Piper CJM, Matei DE, et al. Microbiota-Derived Metabolites Suppress Arthritis by Amplifying Aryl-Hydrocarbon Receptor Activation in Regulatory B Cells[J]. Cell Metab, 2020, 31: 837-851. e10. doi:  10.1016/j.cmet.2020.03.003
    [25] Mizuno M, Noto D, Kaga N, et al. The dual role of short fatty acid chains in the pathogenesis of autoimmune disease models[J]. PLoS One, 2017, 12: e0173032. doi:  10.1371/journal.pone.0173032
    [26] Rodriguez-Carrio J, Lopez P, Sanchez B, et al. Intestinal Dysbiosis Is Associated with Altered Short-Chain Fatty Acids and Serum-Free Fatty Acids in Systemic Lupus Erythe-matosus[J]. Front Immunol, 2017, 8: 23.
    [27] Zegarra-Ruiz DF, El Beidaq A, Iniguez AJ, et al. A Diet-Sensitive Commensal Lactobacillus Strain Mediates TLR7-Dependent Systemic Autoimmunity[J]. Cell Host Microbe, 2019, 25: 113-127 e6. doi:  10.1016/j.chom.2018.11.009
    [28] Haghikia A, Jorg S, Duscha A, et al. Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine[J]. Immunity, 2015, 43: 817-829. doi:  10.1016/j.immuni.2015.09.007
    [29] Erny D, Hrabe de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS[J]. Nat Neurosci, 2015, 18: 965-977. doi:  10.1038/nn.4030
    [30] Cano-Ortiz A, Laborda-Illanes A, Plaza-Andrades I, et al. Connection between the Gut Microbiome, Systemic Inflamma-tion, Gut Permeability and FOXP3 Expression in Patients with Primary Sjogren's Syndrome[J]. Int J Mol Sci, 2020, 21: 8733. doi:  10.3390/ijms21228733
    [31] Chen X, Su W, Wan T, et al. Sodium butyrate regulates Th17/Treg cell balance to ameliorate uveitis via the Nrf2/HO-1 pathway[J]. Biochem Pharmacol, 2017, 142: 111-119. doi:  10.1016/j.bcp.2017.06.136
    [32] Lloyd-Price J, Arze C, Ananthakrishnan AN, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases[J]. Nature, 2019, 569: 655-662. doi:  10.1038/s41586-019-1237-9
    [33] Biagioli M, Carino A, Cipriani S, et al. The Bile Acid Receptor GPBAR1 Regulates the M1/M2 Phenotype of Intes-tinal Macrophages and Activation of GPBAR1 Rescues Mice from Murine Colitis[J]. J Immunol, 2017, 199: 718-733. doi:  10.4049/jimmunol.1700183
    [34] Krautkramer KA, Fan J, Backhed F. Gut microbial metabolites as multi-kingdom intermediates[J]. Nat Rev Microbiol, 2021, 19: 77-94. doi:  10.1038/s41579-020-0438-4
    [35] Singh NP, Singh UP, Rouse M, et al. Dietary Indoles Suppress Delayed-Type Hypersensitivity by Inducing a Switch from Proinflammatory Th17 Cells to Anti-Inflammatory Regulatory T Cells through Regulation of MicroRNA[J]. J Immunol, 2016, 196: 1108-1122. doi:  10.4049/jimmunol.1501727
    [36] Cervantes-Barragan L, Chai JN, Tianero MD, et al. Lactobacillus reuteri induces gut intraepithelial CD4(+)CD8alphaalpha(+) T cells[J]. Science, 2017, 357: 806-810. doi:  10.1126/science.aah5825
    [37] Pongratz G, Lowin T, Sewerin P, et al. Tryptophan metabolism in rheumatoid arthritis is associated with rheumatoid factor and predicts joint pathology evaluated by the Rheumatoid Arthritis MRI Score (RAMRIS)[J]. Clin Exp Rheumatol, 2019, 37: 450-457.
    [38] Hasan H, Ismail H, El-Orfali Y, et al. Therapeutic benefits of Indole-3-Carbinol in adjuvant-induced arthritis and its protective effect against methotrexate induced-hepatic toxicity[J]. BMC Complement Altern Med, 2018, 18: 337. doi:  10.1186/s12906-018-2408-1
    [39] Langan D, Perkins DJ, Vogel SN, et al. Microbiota-Derived Metabolites, Indole-3-aldehyde and Indole-3-acetic Acid, Differentially Modulate Innate Cytokines and Stromal Remodeling Processes Associated with Autoimmune Arthritis[J]. Int J Mol Sci, 2021, 22.
    [40] Rothhammer V, Mascanfroni ID, Bunse L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor[J]. Nat Med, 2016, 22: 586-597. doi:  10.1038/nm.4106
    [41] Lamas B, Richard ML, Leducq V, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands[J]. Nat Med, 2016, 22: 598-605. doi:  10.1038/nm.4102
    [42] Stockinger B, Shah K, Wincent E. AHR in the intestinal microenvironment: safeguarding barrier function[J]. Nat Rev Gastroenterol Hepatol, 2021, 18: 559-570. doi:  10.1038/s41575-021-00430-8
    [43] Funabashi M, Grove TL, Wang M, et al. A metabolic pathway for bile acid dehydroxylation by the gut microbiome[J]. Nature, 2020, 582: 566-570. doi:  10.1038/s41586-020-2396-4
    [44] Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nat Rev Gastroenterol Hepatol, 2018, 15: 111-128. doi:  10.1038/nrgastro.2017.119
    [45] Fiorucci S, Biagioli M, Zampella A, et al. Bile Acids Activated Receptors Regulate Innate Immunity[J]. Front Immunol, 2018, 9: 1853. doi:  10.3389/fimmu.2018.01853
    [46] Hang S, Paik D, Yao L, et al. Bile acid metabolites control TH17 and Treg cell differentiation[J]. Nature, 2019, 576: 143-148. doi:  10.1038/s41586-019-1785-z
    [47] Song X, Sun X, Oh SF, et al. Microbial bile acid metabolites modulate gut RORgamma(+) regulatory T cell homeostasis[J]. Nature, 2020, 577: 410-415. doi:  10.1038/s41586-019-1865-0
    [48] Ma C, Han M, Heinrich B, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells[J]. Science, 2018, 360: eaan5931. doi:  10.1126/science.aan5931
    [49] Chen W, Wei Y, Xiong A, et al. Comprehensive Analysis of Serum and Fecal Bile Acid Profiles and Interaction with Gut Microbiota in Primary Biliary Cholangitis[J]. Clin Rev Allergy Immunol, 2020, 58: 25-38. doi:  10.1007/s12016-019-08731-2
    [50] Li B, Zhang J, Chen Y, et al. Alterations in microbiota and their metabolites are associated with beneficial effects of bile acid sequestrant on icteric primary biliary Cholangitis[J]. Gut Microbes, 2021, 13: 1946366. doi:  10.1080/19490976.2021.1946366
    [51] Bartikoski BJ, De Oliveira MS, Do Espirito Santo RC, et al. A Review of Metabolomic Profiling in Rheumatoid Arthritis: Bringing New Insights in Disease Pathogenesis, Treatment and Comorbidities[J]. Metabolites, 2022, 12: 394. doi:  10.3390/metabo12050394
    [52] Li ZY, Zhou JJ, Luo CL, et al. Activation of TGR5 alleviates inflammation in rheumatoid arthritis peripheral blood mononuclear cells and in mice with collagen Ⅱinduced arthritis[J]. Mol Med Rep, 2019, 20: 4540-4550.
    [53] He J, Chan T, Hong X, et al. Microbiome and Metabolome Analyses Reveal the Disruption of Lipid Metabolism in Systemic Lupus Erythematosus[J]. Front Immunol, 2020, 11: 1703. doi:  10.3389/fimmu.2020.01703
    [54] Lian F, Wang Y, Chen J, et al. Activation of farnesoid X receptor attenuates liver injury in systemic lupus erythema-tosus[J]. Rheumatol Int, 2012, 32: 1705-1710. doi:  10.1007/s00296-011-1874-2
    [55] Gadaleta RM, Garcia-Irigoyen O, Cariello M, et al. Fibroblast Growth Factor 19 modulates intestinal microbiota and inflammation in presence of Farnesoid X Receptor[J]. EBioMedicine, 2020, 54: 102719. doi:  10.1016/j.ebiom.2020.102719
  • 加载中
计量
  • 文章访问数:  3784
  • HTML全文浏览量:  1196
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-02
  • 录用日期:  2022-07-15
  • 网络出版日期:  2022-07-28
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!