留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vaspin通过AMPK/mTOR自噬信号通路影响2型糖尿病大鼠胰岛β细胞功能

魏姣姣 刘师伟 段瑞雪 李楠 王江娜

魏姣姣, 刘师伟, 段瑞雪, 李楠, 王江娜. Vaspin通过AMPK/mTOR自噬信号通路影响2型糖尿病大鼠胰岛β细胞功能[J]. 协和医学杂志, 2023, 14(3): 543-552. doi: 10.12290/xhyxzz.2022-0183
引用本文: 魏姣姣, 刘师伟, 段瑞雪, 李楠, 王江娜. Vaspin通过AMPK/mTOR自噬信号通路影响2型糖尿病大鼠胰岛β细胞功能[J]. 协和医学杂志, 2023, 14(3): 543-552. doi: 10.12290/xhyxzz.2022-0183
WEI Jiaojiao, LIU Shiwei, DUAN Ruixue, LI Nan, WANG Jiangna. Effects of Vaspin on Pancreatic Beta Cell Function in Type 2 Diabetic Rats by AMPK/mTOR Autophagy Signaling Pathway[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 543-552. doi: 10.12290/xhyxzz.2022-0183
Citation: WEI Jiaojiao, LIU Shiwei, DUAN Ruixue, LI Nan, WANG Jiangna. Effects of Vaspin on Pancreatic Beta Cell Function in Type 2 Diabetic Rats by AMPK/mTOR Autophagy Signaling Pathway[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 543-552. doi: 10.12290/xhyxzz.2022-0183

Vaspin通过AMPK/mTOR自噬信号通路影响2型糖尿病大鼠胰岛β细胞功能

doi: 10.12290/xhyxzz.2022-0183
基金项目: 

山西省重点研发计划 201803D31133

山西省回国留学人员科研资助项目 2020-180

2020年山西省留学人员科技活动择优资助项目 20200032

中国糖尿病英才研究项目 2018-N-01-28

详细信息
    通讯作者:

    刘师伟, E-mail: lswspring6@aliyun.com

  • 中图分类号: R587.1;R365

Effects of Vaspin on Pancreatic Beta Cell Function in Type 2 Diabetic Rats by AMPK/mTOR Autophagy Signaling Pathway

Funds: 

Key Project of Research and Development Plan in Shanxi Province 201803D31133

Research Project Supported by Shanxi Scholarship Council of China 2020-180

Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province 20200032

China Diabetes Young Scientific Talent Research Project Application Form 2018-N-01-28

More Information
  • 摘要:   目的  探究内脏脂肪特异性丝氨酸蛋白酶抑制剂(visceral adipose tissue-derived serpin, Vaspin)改善2型糖尿病(type 2 diabetes mellitus,T2DM)大鼠胰岛β细胞功能的作用机制。  方法  采用高脂高糖喂养联合腹腔注射链脲佐菌素的方式建立T2DM大鼠模型,并随机分为T2DM组(n=10)、Vaspin组(n=10),以同周龄正常饲料喂养的SD大鼠为正常对照组(n=10)。记录造模前及Vaspin干预前、干预4周和干预8周时3组大鼠体质量和空腹血糖(fasting blood-glucose, FBG)。Vaspin干预8周时,测定3组大鼠空腹胰岛素(fasting insulin, FINS)、糖耐量与胰岛素敏感性、胰岛β细胞功能及自噬相关蛋白表达水平,观察胰腺组织病理学形态。  结果  与正常对照组比较,T2DM组与Vaspin组干预前、干预4周、干预8周时体质量均下降,FBG均升高(P均<0.05);与T2DM组比较,Vaspin组干预8周时大鼠体质量增高,FBG下降(P均<0.05)。组织病理示,正常对照组大鼠胰腺组织正常,胰岛细胞排列均匀、整齐,形态规则;T2DM组大鼠胰岛结构明显破坏,细胞分布不均匀、形状不规则;Vaspin组大鼠胰岛结构损伤、胰岛细胞形态破坏均较T2DM组减轻。干预8周时,与正常对照组比较,T2DM组及Vaspin组FINS降低,腹腔葡萄糖耐量试验(intraperitoneal glucose tolerance test, IPGTT)及腹腔胰岛素耐量试验(intraperitoneal insulin tolerance test, IPITT)血糖曲线下面积均升高(P均<0.05);与T2DM组比较,Vaspin组FINS升高,IPGTT与IPITT血糖曲线下面积均降低(P均<0.05)。高葡萄糖钳夹试验示,干预8周时,Vaspin组葡萄糖输注速率、第一时相及第二时相胰岛素分泌量虽低于正常对照组,但各指标均较T2DM组升高(P均<0.05)。免疫组化及Western blot结果示,干预8周时,与正常对照组比较,T2DM组大鼠胰腺组织中胰岛素表达水平及磷酸化哺乳动物雷帕霉素靶蛋白(phosphorylated mammalian target of rapamycin, p-mTOR)/mTOR比值均降低,P62、微管相关蛋白1轻链3(microtubule associated protein1 light chain3, LC3)蛋白水平、磷酸化腺苷酸活化蛋白激酶(phosphorylated adenosine monophosphate activated protein kinase, p-AMPK)/AMPK比值、LC3Ⅱ/LC3Ⅰ比值均升高(P均<0.05);与T2DM组比较,Vaspin组大鼠胰腺组织中胰岛素、LC3蛋白水平、p-AMPK/AMPK比值及LC3Ⅱ/LC3Ⅰ比值均升高,p-mTOR/mTOR比值及P62蛋白表达水平均降低(P均<0.05)。  结论  Vaspin可通过AMPK/mTOR自噬信号通路增强T2DM大鼠胰岛β细胞自噬能力,进而改善胰岛β细胞功能。
    作者贡献:魏姣姣负责研究实施及论文撰写;刘师伟负责研究设计并指导论文修订;段瑞雪、李楠负责实验设计、数据分析及结果解读;王江娜负责实验过程及文献查询。
    利益冲突:所有作者均声明不存在利益冲突
  • 图  1  3组大鼠糖耐量及胰岛素敏感性比较(n=6)

    A.腹腔葡萄糖耐量试验血糖变化;B.腹腔葡萄糖耐量试验的血糖AUC比较;C.腹腔胰岛素耐量试验血糖变化;D.腹腔胰岛素耐量试验的血糖AUC比较
    AUC:曲线下面积;T2DM、Vaspin:同表 1

    图  2  3组大鼠高葡萄糖钳夹试验结果比较(n=3)

    A.试验过程中GIR变化;B.稳态时GIR比较;C.第一时相与第二时相胰岛素分泌量比较
    GIR:葡萄糖输注速率;T2DM、Vaspin:同表 1

    图  3  3组大鼠胰腺组织病理图(HE,×400,n=3)

    A.正常对照组;B.T2DM组;C.Vaspin组
    T2DM、Vaspin:同表 1

    图  4  3组大鼠胰腺组织胰岛素、P62、LC3蛋白表达免疫组化图(n=3)

    A、D、G.胰岛素;B、E、H.LC3蛋白;C、F、I.P62蛋白
    LC3:微管相关蛋白1轻链3;T2DM、Vaspin:同表 1

    图  5  3组大鼠胰腺组织AMPK/mTOR信号通路活性及自噬相关蛋白表达凝胶电泳图(n=3)

    AMPK:腺苷酸活化蛋白激酶;p-AMPK:磷酸化腺苷酸活化蛋白激酶;mTOR:哺乳动物雷帕霉素靶蛋白;p-mTOR:磷酸化哺乳动物雷帕霉素靶蛋白;LC3:同图 4;T2DM、Vaspin:同表 1

    表  1  3组大鼠不同时间点体质量、FBG比较(x±s)

    指标 正常对照组
    (n=10)
    T2DM组
    (n=10)
    Vaspin组
    (n=10)
    P
    体质量(g)
      造模前 187.6±8.7 187.7±6.0 185.9±8.2 0.844
      干预前 515.2±53.9 439.3±35.8 435.6±46.6 0.001
      干预4周 574.7±64.8 429.1±38.9 465.7±62.8 0.000
      干预8周 596.1±72.8 400.5±41.7 466.1±53.6†§ 0.000
    FBG(mmol/L)
      造模前 5.05±0.31 4.94±0.32 5.00±0.39 0.773
      干预前 5.00±0.31 25.99±4.83 26.10±3.42 0.000
      干预4周 5.26±0.35 26.71±2.04 24.64±2.67 0.000
      干预8周 5.00±0.60 28.78±2.33 23.04±3.60†§ 0.000
    FBG:空腹血糖;T2DM;2型糖尿病;Vaspin: 内脏脂肪特异性丝氨酸蛋白酶抑制剂;与正常对照组比较,P<0.05;§与T2DM组比较,P<0.05
    下载: 导出CSV

    表  2  3组大鼠干预8周时FINS、TC、TG水平比较(x±s)

    组别 FINS(μg/L) TC(mmol/L) TG(mmol/L)
    正常对照组(n=10) 0.72±0.08 1.62±0.18 0.62±0.17
    T2DM组(n=10) 0.37±0.05 3.19±0.31 1.78±0.27
    Vaspin组(n=10) 0.56±0.05†§ 2.18±0.18†§ 1.07±0.17†§
    P 0.000 0.000 0.000
    FINS:空腹胰岛素;TC:总胆固醇;TG:甘油三酯;T2DM、Vaspin:同表 1与正常对照组比较,P<0.05;§与T2DM组比较,P<0.05
    下载: 导出CSV

    表  3  3组大鼠干预8周时p-AMPK/AMPK、p-mTOR/mTOR、LC3Ⅱ/LC3Ⅰ、P62水平比较(x±s)

    组别 p-AMPK/AMPK p-mTOR/mTOR LC3Ⅱ/LC3Ⅰ P62
    正常对照组(n=3) 0.30±0.02 1.69±0.18 1.57±0.10 0.40±0.06
    T2DM组(n=3) 0.64±0.04 1.21±0.07 2.25±0.12 1.06±0.04
    Vaspin组(n=3) 0.86±0.04†§ 0.37±0.02†§ 2.65±0.05†§ 0.36±0.03†§
    P 0.000 0.000 0.000 0.000
    AMPK、p-AMPK、mTOR、p-mTOR:同图 5;LC3:同图 4;T2DM、Vaspin:同表 1与正常对照组比较,P<0.05;§与T2DM组比较,P<0.05
    下载: 导出CSV
  • [1] Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes[J]. N Engl J Med, 2019, 380: 347-357. doi:  10.1056/NEJMoa1812389
    [2] Cerf ME. Beta cell dysfunction and insulin resistance[J]. Front Endocrinol, 2013, 4: 37.
    [3] Lee YH, Kim J, Park K, et al. beta-cell autophagy: Mechanism and role in beta-cell dysfunction[J]. Mol Metab, 2019, 27S: S92-S103.
    [4] Alers S, Loffler AS, Wesselborg S, et al. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks[J]. Mol Cell Biol, 2012, 32: 2-11. doi:  10.1128/MCB.06159-11
    [5] Rourke JL, Hu Q, Screaton RA. AMPK and Friends: Central Regulators of beta Cell Biology[J]. Trends Endocrinol Metab, 2018, 29: 111-122. doi:  10.1016/j.tem.2017.11.007
    [6] Hida K, Wada J, Eguchi J, et al. Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity[J]. Proc Natl Acad Sci U S A, 2005, 102: 10610-10615. doi:  10.1073/pnas.0504703102
    [7] Liu S, Duan R, Wu Y, et al. Effects of Vaspin on Insulin Resistance in Rats and Underlying Mechanisms[J]. Sci Rep, 2018, 8: 13542. doi:  10.1038/s41598-018-31923-3
    [8] Kloting N, Kovacs P, Kern M, et al. Central vaspin administration acutely reduces food intake and has sustained blood glucose-lowering effects[J]. Diabetologia, 2011, 54: 1819-1823. doi:  10.1007/s00125-011-2137-1
    [9] Lin Y, Zhuang J, Li H, et al. Vaspin attenuates the progression of atherosclerosis by inhibiting ER stress-induced macrophage apoptosis in apoE/mice[J]. Mol Med Rep, 2016, 13: 1509-1516. doi:  10.3892/mmr.2015.4708
    [10] Heiker JT, Kloting N, Kovacs P, et al. Vaspin inhibits kallikrein 7 by serpin mechanism[J]. Cell Mol Life Sci, 2013, 70: 2569-2583. doi:  10.1007/s00018-013-1258-8
    [11] Yang F, Xue L, Han Z, et al. Vaspin alleviates myocardial ischaemia/reperfusion injury via activating autophagic flux and restoring lysosomal function[J]. Biochem Biophys Res Commun, 2018, 503: 501-507. doi:  10.1016/j.bbrc.2018.05.004
    [12] Han X, Chen X, Wang X, et al. Electroacupuncture at ST36 Improve the Gastric Motility by Affecting Neurotransmitters in the Enteric Nervous System in Type 2 Diabetic Rats[J]. Evid Based Complement Alternat Med, 2021, 2021: 6666323. http://www.xueshufan.com/publication/3166249336
    [13] Liu S, Li X, Wu Y, et al. Effects of vaspin on pancreatic beta cell secretion via PI3K/Akt and NF-kappaB signaling pathways[J]. PLoS One, 2017, 12: e0189722. doi:  10.1371/journal.pone.0189722
    [14] Park S, Park CH, Jang JS. Antecedent intake of traditional Asian-style diets exacerbates pancreatic beta-cell function, growth and survival after Western-style diet feeding in weaning male rats[J]. J Nutr Biochem, 2006, 17: 307-318. doi:  10.1016/j.jnutbio.2005.07.002
    [15] Sun Y, Shi H, Yin S, et al. Human Mesenchymal Stem Cell Derived Exosomes Alleviate Type 2 Diabetes Mellitus by Reversing Peripheral Insulin Resistance and Relieving beta-Cell Destruction[J]. ACS Nano, 2018, 12: 7613-7628. doi:  10.1021/acsnano.7b07643
    [16] Kloting N, Berndt J, Kralisch S, et al. Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes[J]. Biochem Biophys Res Commun, 2006, 339: 430-436. doi:  10.1016/j.bbrc.2005.11.039
    [17] Nicholson T, Church C, Tsintzas K, et al. Vaspin promotes insulin sensitivity of elderly muscle and is upregulated in obesity[J]. J Endocrinol, 2019, 41: 31-43. http://doc.paperpass.com/foreign/rgArti20198566559.html
    [18] Nakatsuka A, Wada J, Iseda I, et al. Vaspin is an adipokine ameliorating ER stress in obesity as a ligand for cell-surface GRP78/MTJ-1 complex[J]. Diabetes, 2012, 61: 2823-2832. doi:  10.2337/db12-0232
    [19] Chang KC, Liu PF, Chang CH, et al. The interplay of autophagy and oxidative stress in the pathogenesis and therapy of retinal degenerative diseases[J]. Cell Biosci, 2022, 12: 1. doi:  10.1186/s13578-021-00736-9
    [20] Yassin R, Tadmor H, Farber E, et al. Alteration of autophagy-related protein 5 (ATG5) levels and Atg5 gene expression in diabetes mellitus with and without complications[J]. Diab Vasc Dis Res, 2021, 18: 14791641211062050. http://doc.paperpass.com/foreign/rgArti2021271489573.html
    [21] Tanida I, Minematsu-Ikeguchi N, Ueno T, et al. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy[J]. Autophagy, 2005, 1: 84-91. doi:  10.4161/auto.1.2.1697
    [22] Kumar AV, Mills J, Lapierre LR. Selective Autophagy Receptor p62/SQSTM1, a Pivotal Player in Stress and Aging[J]. Front Cell Dev Biol, 2022, 10: 793328. doi:  10.3389/fcell.2022.793328
    [23] Cheng STW, Li SYT, Leung PS. Fibroblast Growth Factor 21 Stimulates Pancreatic Islet Autophagy via Inhibition of AMPK-mTOR Signaling[J]. Int J Mol Sci, 2019, 20: 2517. doi:  10.3390/ijms20102517
    [24] Lytrivi M, Castell AL, Poitout V, et al. Recent Insights Into Mechanisms of beta-Cell Lipo- and Glucolipotoxicity in Type 2 Diabetes[J]. J Mol Biol, 2020, 432: 1514-1534. doi:  10.1016/j.jmb.2019.09.016
    [25] Perluigi M, Di Domenico F, Butterfield DA. mTOR signaling in aging and neurodegeneration: At the crossroad between metabolism dysfunction and impairment of autophagy[J]. Neurobiol Dis, 2015, 84: 39-49. doi:  10.1016/j.nbd.2015.03.014
    [26] Tamargo-Gomez I, Marino G. AMPK: Regulation of Meta-bolic Dynamics in the Context of Autophagy[J]. Int J Mol Sci, 2018, 19: 3812. doi:  10.3390/ijms19123812
    [27] Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nat Cell Biol, 2011, 13: 132-141. doi:  10.1038/ncb2152
    [28] Varshney R, Gupta S, Roy P. Cytoprotective effect of kaempferol against palmitic acid-induced pancreatic beta-cell death through modulation of autophagy via AMPK/mTOR signaling pathway[J]. Mol Cell Endocrinol, 2017, 448: 1-20. doi:  10.1016/j.mce.2017.02.033
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  100
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 录用日期:  2022-05-17
  • 刊出日期:  2023-05-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!