留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异柠檬酸脱氢酶基因突变治疗的研究进展

林美佳 曾也婷 王心睿 黄雄飞

林美佳, 曾也婷, 王心睿, 黄雄飞. 异柠檬酸脱氢酶基因突变治疗的研究进展[J]. 协和医学杂志, 2023, 14(2): 346-352. doi: 10.12290/xhyxzz.2022-0176
引用本文: 林美佳, 曾也婷, 王心睿, 黄雄飞. 异柠檬酸脱氢酶基因突变治疗的研究进展[J]. 协和医学杂志, 2023, 14(2): 346-352. doi: 10.12290/xhyxzz.2022-0176
LIN Meijia, ZENG Yeting, WANG Xinrui, HUANG Xiongfei. Research Progress of Isocitrate Dehydrogenase Gene Mutation Therapy[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 346-352. doi: 10.12290/xhyxzz.2022-0176
Citation: LIN Meijia, ZENG Yeting, WANG Xinrui, HUANG Xiongfei. Research Progress of Isocitrate Dehydrogenase Gene Mutation Therapy[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 346-352. doi: 10.12290/xhyxzz.2022-0176

异柠檬酸脱氢酶基因突变治疗的研究进展

doi: 10.12290/xhyxzz.2022-0176
基金项目: 

福建省自然科学基金 2022J01662

详细信息
    通讯作者:

    黄雄飞, E-mail:15705917895@163.com

  • 中图分类号: R-1;R730.5

Research Progress of Isocitrate Dehydrogenase Gene Mutation Therapy

Funds: 

Natural Science Foundation of Fujian Province 2022J01662

More Information
  • 摘要: 异柠檬酸脱氢酶(isocitrate dehydrogenase,IDH)作为三羧酸循环的关键酶,在细胞能量代谢中发挥重要作用。IDH基因突变可引起该酶的活性发生改变,导致大量肿瘤代谢物2-羟基戊二酸蓄积,从而引起严重的表观遗传调控紊乱和基因表达失调,促进肿瘤发生。近年来研究表明,IDH1和IDH2突变与胶质瘤、急性髓系白血病、肝内胆管癌等多种肿瘤的发生发展及其临床治疗具有密切关系。将IDH基因突变作为检测胶质瘤、急性髓系白血病、肝内胆管癌等肿瘤发生的分子标志物,以及靶向药物的开发位点具有重要意义。本文就IDH突变机制及其与多种肿瘤发生发展的关系,以及IDH突变治疗在基础研究和药物临床研究中的进展作一综述。
    作者贡献:林美佳负责文献查阅及撰写论文;黄雄飞负责论文修改指导;曾也婷、王心睿负责论文审校。
    利益冲突:所有作者均声明不存在利益冲突
  • 图  1  IDH基因突变导致肿瘤发生发展的分子机制

    IDH: 异柠檬酸脱氢酶;TET1:10-11易位蛋白

  • [1] Waitkus MS, Diplas BH, Yan H. Isocitrate dehydrogenase mutations in glioma[J]. Neuro Oncol, 2016, 18: 16-26. doi:  10.1093/neuonc/nov136
    [2] Biaglow JE, Miller RA. The thioredoxin reductase/thioredoxin system: novel redox targets for cancer therapy[J]. Cancer Biol Ther, 2005, 4: 6-13.
    [3] Aykin-Burns N, Ahmad IM, Zhu Y, et al. Increased levels of superoxide and H2O2 mediate the differential suscep-tibility of cancer cells versus normal cells to glucose deprivation[J]. Biochem J, 2009, 418: 29-37. doi:  10.1042/BJ20081258
    [4] Yang B, Zhong C, Peng Y, et al. Molecular mechanisms of "off-on switch" of activities of human IDH1 by tumor-associated mutation R132H[J]. Cell Res, 2010, 20: 1188-1200. doi:  10.1038/cr.2010.145
    [5] Parsons DW, Jones S, Zhang X, et al. An Integrated Genomic Analysis of Human Glioblastoma Multiforme[J]. Science, 2008, 321: 1807-1812. doi:  10.1126/science.1164382
    [6] Mardis ER, Ding L, Dooling DJ, et al. Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome[J]. N Engl J Med, 2009, 361: 1058-1066. doi:  10.1056/NEJMoa0903840
    [7] Moeini A, Sia D, Bardeesy N, et al. Molecular Pathogenesis and Targeted Therapies of Intrahepatic Cholangiocarcinoma[J]. Clin Cancer Res, 2016, 22: 291-300. doi:  10.1158/1078-0432.CCR-14-3296
    [8] Tommasini-Ghelfi S, Murnan K, Kouri FM, et al. Cancer-associated mutation and beyond: The emerging biology of isocitrate dehydrogenases in human disease[J]. Sci Adv, 2019, 5: eaaw4543. doi:  10.1126/sciadv.aaw4543
    [9] Harding JJ, Lowery MA, Shih AH, et al. Isoform Switching as a Mechanism of Acquired Resistance to Mutant Isocitrate Dehydrogenase Inhibition[J]. Cancer Discov, 2018, 8: 1540-1547. doi:  10.1158/2159-8290.CD-18-0877
    [10] Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation[J]. Cancer Cell, 2010, 18: 553-567. doi:  10.1016/j.ccr.2010.11.015
    [11] Sulkowski PL, Corso CD, Robinson ND, et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity[J]. Sci Transl Med, 2017, 9: eaaI2463. doi:  10.1126/scitranslmed.aal2463
    [12] Schvartzman JM, Reuter VP, Koche RP, et al. 2-hydroxyglutarate inhibits MyoD-mediated differentiation by prevent-ing H3K9 demethylation[J]. Proc Natl Acad Sci USA, 2019, 116: 12851-12856. doi:  10.1073/pnas.1817662116
    [13] Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults[J]. Lancet, 2018, 392: 432-446. doi:  10.1016/S0140-6736(18)30990-5
    [14] Su YT, Phan FP, Wu J. Perspectives on IDH Mutation in Diffuse Gliomas[J]. Trends Cancer, 2018, 4: 605-607. doi:  10.1016/j.trecan.2018.06.006
    [15] Huang RY, Young RJ, Ellingson BM, et al. Volumetric analysis of IDH-mutant lower-grade glioma: a natural history study of tumor growth rates before and after treatment[J]. Neuro Oncol, 2020, 22: 1822-1830. doi:  10.1093/neuonc/noaa105
    [16] Molenaar RJ, Radivoyevitch T, Nagata Y, et al. IDH1/2 Mutations Sensitize Acute Myeloid Leukemia to PARP Inhibition and This Is Reversed by IDH1/2-Mutant Inhibitors[J]. Clin Cancer Res, 2018, 24: 1705-1715. doi:  10.1158/1078-0432.CCR-17-2796
    [17] Xu Q, Li Y, Lv N, et al. Correlation between isocitrate dehydrogenase gene aberrations and prognosis of patients with acute myeloid leukemia: a systematic review and meta-analysis[J]. Clin Cancer Res, 2017, 23: 4511-4522. doi:  10.1158/1078-0432.CCR-16-2628
    [18] Haga H, Patel T. Molecular diagnosis of intrahepatic cholangiocarcinoma[J]. J Hepatobiliary Pancreat Sci, 2015, 22: 114-123. doi:  10.1002/jhbp.156
    [19] Saha SK, Zhu AX, Fuchs CS, et al. Forty-Year Trends in Cholangiocarcinoma Incidence in the US: Intrahepatic Disease on the Rise[J]. Oncologist, 2016, 21: 594-599. doi:  10.1634/theoncologist.2015-0446
    [20] Bai X, Zhang H, Zhou Y, et al. Ten-Eleven Translocation 1 Promotes Malignant Progression of Cholangiocarcinoma With Wild-Type Isocitrate Dehydrogenase 1[J]. Hepatology, 2021, 73: 1747-1763. doi:  10.1002/hep.31486
    [21] Wang P, Dong Q, Zhang C, et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas[J]. Oncogene, 2013, 32: 3091-3100. doi:  10.1038/onc.2012.315
    [22] Tateishi K, Wakimoto H, Iafrate AJ, et al. Extreme Vulnerability of IDH1 Mutant Cancers to NAD+ Depletion[J]. Cancer Cell, 2015, 28: 773-784. doi:  10.1016/j.ccell.2015.11.006
    [23] Nagashima H, Lee CK, Tateishi K, et al. Poly(ADP-ribose) Glycohydrolase Inhibition Sequesters NAD(+) to Potentiate the Metabolic Lethality of Alkylating Chemo-therapy in IDH-Mutant Tumor Cells[J]. Cancer Discov, 2020, 10: 1672-1689. doi:  10.1158/2159-8290.CD-20-0226
    [24] McDuff SGR, Dietrich J, Atkins KM, et al. Radiation and chemotherapy for high-risk lower grade gliomas: Choosing between temozolomide and PCV[J]. Cancer Med, 2020, 9: 3-11. doi:  10.1002/cam4.2686
    [25] Yamashita AS, da Costa Rosa M, Borodovsky A, et al. Demethylation and epigenetic modification with 5-azacytidine reduces IDH1 mutant glioma growth in combination with temozolomide[J]. Neuro Oncol, 2019, 21: 189-200. doi:  10.1093/neuonc/noy146
    [26] Raulet DH. Roles of the NKG2D immunoreceptor and its ligands[J]. Nat Rev Immunol, 2003, 3: 781-790. doi:  10.1038/nri1199
    [27] Zhang X, Kim WJ, Rao AV, et al. In vivo efficacy of decitabine as a natural killer cell-mediated immunotherapy against isocitrate dehydrogenase mutant gliomas[J]. Neurosurg Focus, 2022, 52: E3.
    [28] DiNardo CD, Stein AS, Stein EM, et al. Mutant Isocitrate Dehydrogenase 1 Inhibitor Ivosidenib in Combination With Azacitidine for Newly Diagnosed Acute Myeloid Leukemia[J]. J Clin Oncol, 2021, 39: 57-65.
    [29] Valle J, Wasan H, Palmer DH, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer[J]. N Engl J Med, 2010, 362: 1273-1281. doi:  10.1056/NEJMoa0908721
    [30] Yang X, Wang J. Precision therapy for acute myeloid leukemia[J]. J Hematol Oncol, 2018, 11: 3. doi:  10.1186/s13045-017-0543-7
    [31] Wang SS, Bandopadhayay P, Jenkins MR. Towards Immunotherapy for Pediatric Brain Tumors[J]. Trends Immunol, 2019, 40: 748-761. doi:  10.1016/j.it.2019.05.009
    [32] Roerden M, Nelde A, Walz JS. Neoantigens in Hematolo-gical Malignancies-Ultimate Targets for Immunotherapy?[J]. Front Immunol, 2019, 10: 3004. doi:  10.3389/fimmu.2019.03004
    [33] Platten M, Bunse L, Wick A, et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma[J]. Nature, 2021, 592: 463-468. doi:  10.1038/s41586-021-03363-z
    [34] Kohanbash G, Carrera DA, Shrivastav S, et al. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas[J]. J Clin Invest, 2017, 127: 1425-1437. doi:  10.1172/JCI90644
    [35] Bunse L, Pusch S, Bunse T, et al. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate[J]. Nat Med, 2018, 24: 1192-1203. doi:  10.1038/s41591-018-0095-6
    [36] DiNardo CD, Stein EM, de Botton S, et al. Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML[J]. N Engl J Med, 2018, 378: 2386-2398. doi:  10.1056/NEJMoa1716984
    [37] Mellinghoff IK, Ellingson BM, Touat M, et al. Ivosidenib in Isocitrate Dehydrogenase 1-Mutated Advanced Glioma[J]. J Clin Oncol, 2020, 38: 3398-3406. doi:  10.1200/JCO.19.03327
    [38] Andronesi OC, Arrillaga-Romany IC, Ly KI, et al. Pharmacodynamics of mutant-IDH1 inhibitors in glioma patients probed by in vivo 3D MRS imaging of 2-hydroxyglutarate[J]. Nat Commun, 2018, 9: 1474. doi:  10.1038/s41467-018-03905-6
    [39] Lowery MA, Burris HA 3rd, Janku F, et al. Safety and activity of ivosidenib in patients with IDH1-mutant advanced cholangiocarcinoma: a phase 1 study[J]. Lancet Gastroenterol Hepatol, 2019, 4: 711-720. doi:  10.1016/S2468-1253(19)30189-X
    [40] Abou-Alfa GK, Macarulla T, Javle MM, et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study[J]. Lancet Oncol, 2020, 21: 796-807. doi:  10.1016/S1470-2045(20)30157-1
    [41] Cho YS, Levell JR, Liu G, et al. Discovery and Evaluation of Clinical Candidate IDH305, a Brain Penetrant Mutant IDH1 Inhibitor[J]. ACS Med Chem Lett, 2017, 8: 1116-1121. doi:  10.1021/acsmedchemlett.7b00342
    [42] Chaturvedi A, Herbst L, Pusch S, et al. Pan-mutant-IDH1 inhibitor BAY1436032 is highly effective against human IDH1 mutant acute myeloid leukemia in vivo[J]. Leukemia, 2017, 31: 2020-2028. doi:  10.1038/leu.2017.46
    [43] Fathi AT, DiNardo CD, Kline I, et al. Differentiation Syndrome Associated With Enasidenib, a Selective Inhibitor of Mutant Isocitrate Dehydrogenase 2: Analysis of a Phase 1/2 Study[J]. JAMA Oncol, 2018, 4: 1106-1110. doi:  10.1001/jamaoncol.2017.4695
    [44] Pollyea DA, Tallman MS, de Botton S, et al. Enasi-denib, an inhibitor of mutant IDH2 proteins, induces durable remissions in older patients with newly diagnosed acute myeloid leukemia[J]. Leukemia, 2019, 33: 2575-2584. doi:  10.1038/s41375-019-0472-2
    [45] Stein EM, DiNardo CD, Fathi AT, et al. Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib[J]. Blood, 2019, 133: 676-687. doi:  10.1182/blood-2018-08-869008
    [46] Mellinghoff IK, Penas-Prado M, Peters KB, et al. Vorasidenib, a Dual Inhibitor of Mutant IDH1/2, in Recurrent or Progressive Glioma; Results of a First-in-Human Phase I Trial[J]. Clin Cancer Res, 2021, 27: 4491-4499. doi:  10.1158/1078-0432.CCR-21-0611
    [47] Konteatis Z, Artin E, Nicolay B, et al. Vorasidenib (AG-881): A First-in-Class, Brain-Penetrant Dual Inhibitor of Mutant IDH1 and 2 for Treatment of Glioma[J]. ACS Med Chem Lett, 2020, 11: 101-107. doi:  10.1021/acsmedchemlett.9b00509
    [48] Karpel-Massler G, Nguyen TTT, Shang E, et al. Novel IDH1-Targeted Glioma Therapies[J]. CNS Drugs, 2019, 33: 1155-1166. doi:  10.1007/s40263-019-00684-6
    [49] Fritz C, Portwood SM, Przespolewski A, et al. PARP goes the weasel! Emerging role of PARP inhibitors in acute leukemias[J]. Blood Rev, 2021, 45: 100696. doi:  10.1016/j.blre.2020.100696
    [50] Mao Y, Huang X, Shuang Z, et al. PARP inhibitor olaparib sensitizes cholangiocarcinoma cells to radiation[J]. Cancer Med, 2018, 7: 1285-1296. doi:  10.1002/cam4.1318
    [51] Chan SM, Thomas D, Corces-Zimmerman MR, et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia[J]. Nat Med, 2015, 21: 178-184. doi:  10.1038/nm.3788
    [52] Morsia E, McCullough K, Joshi M, et al. Venetoclax and hypomethylating agents in acute myeloid leukemia: Mayo Clinic series on 86 patients[J]. Am J Hematol, 2020, 95: 1511-1521. doi:  10.1002/ajh.25978
  • 加载中
图(1)
计量
  • 文章访问数:  397
  • HTML全文浏览量:  51
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-03
  • 录用日期:  2022-09-07
  • 网络出版日期:  2022-12-30
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!