留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合多任务学习的半监督病理图像分割方法

曾黎 汤红忠 王蔚 谢明健 吴勇军

曾黎, 汤红忠, 王蔚, 谢明健, 吴勇军. 结合多任务学习的半监督病理图像分割方法[J]. 协和医学杂志, 2023, 14(2): 416-425. doi: 10.12290/xhyxzz.2022-0096
引用本文: 曾黎, 汤红忠, 王蔚, 谢明健, 吴勇军. 结合多任务学习的半监督病理图像分割方法[J]. 协和医学杂志, 2023, 14(2): 416-425. doi: 10.12290/xhyxzz.2022-0096
ZENG Li, TANG Hongzhong, WANG Wei, XIE Mingjian, WU Yongjun. Semi-supervised Histopathological Image Segmentation Method Based on Multi-task Learning[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 416-425. doi: 10.12290/xhyxzz.2022-0096
Citation: ZENG Li, TANG Hongzhong, WANG Wei, XIE Mingjian, WU Yongjun. Semi-supervised Histopathological Image Segmentation Method Based on Multi-task Learning[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 416-425. doi: 10.12290/xhyxzz.2022-0096

结合多任务学习的半监督病理图像分割方法

doi: 10.12290/xhyxzz.2022-0096
基金项目: 

国家自然科学基金区域创新发展联合基金 U19A2083

湖南省自然科学基金 2020JJ4588

湖南省自然科学基金 2020JJ4090

湘潭大学智能计算与信息处理教育部重点实验室开放课题 2020ICIP06

详细信息
    通讯作者:

    汤红忠, E-mail: diandiant@126.com

  • 中图分类号: R36; TP183

Semi-supervised Histopathological Image Segmentation Method Based on Multi-task Learning

Funds: 

Joint Fund for Regional Innovation and Development of National Natural Science Foundation in China U19A2083

Natural Science Foundation of Hunan Province in China 2020JJ4588

Natural Science Foundation of Hunan Province in China 2020JJ4090

Open Project of Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University 2020ICIP06

More Information
  • 摘要: 病理图像自动分割是计算机辅助诊断技术的重要组成部分,可降低病理科医师工作负担,提高诊断效率和准确性。本文介绍一种结合多任务学习的半监督病理图像分割方法。该方法基于半监督的方式同时进行癌症区域图像分割与分类,即首先基于极少量像素级标注图像对分割网络进行训练,然后结合图像级标注图像同时完成图像分割及分类。在网络训练过程中,通过此2个任务的交替迭代以优化网络参数,降低了深度学习模型对图像标注的依赖性。在此基础上,模型引入了动态加权交叉熵损失函数,可利用分类预测概率值自动完成每个像素的权重分配,以提高分割网络对预测概率值较低目标区域的关注度。该策略可有效保持癌症区域的细节信息,经验证可在像素标注数据量不足的情况下对乳腺癌病理图像获得良好的癌症区域分割结果。
    作者贡献:曾黎负责试验方案设计及论文撰写;汤红忠指导论文撰写修订;王蔚、谢明健负责模型的代码调试及参数优化;吴勇军负责数据整理。
    利益冲突:所有作者均声明不存在利益冲突
  • 图  1  不同级别标注的病理图像

    A.切片级标注,蓝色方框为正常组织区域,红色方框为癌症组织区域;B.切片级标注中正常组织区域与癌症区域对应的图像级标注;C.图像级标注中癌症区域对应的像素级标注

    图  2  半监督学习方法

    图  3  U-Net网络结构示意图

    ESP: 空间金字塔卷积;PSP: 金字塔池化

    图  4  多任务学习策略的操作步骤示意图

    图  5  不同损失函数下的图像分割结果展示

    CE、FW、DWF:同表 3

    图  6  不同标注数据量对分类网络性能的影响

    图  7  不同方法对较小癌症区域病理图像的分割结果

    S为具有像素级标注量数据在所有数据中的占比

    图  8  不同方法对较大癌症区域病理图像的分割结果

    S为具有像素级标注量分割数据在所有数据中的占比

    表  1  β值对网络分割性能的影响

    β DSC IOU
    1 0.8431 0.7288
    2 0.8437 0.7296
    3 0.8479 0.7360
    4 0.8450 0.7316
    5 0.8423 0.7276
    6 0.8419 0.7269
    IOU:交并比;DSC:Dice相似系数
    下载: 导出CSV

    表  2  α值对网络分割性能的影响

    α DSC IOU
    0.1 0.8445 0.7309
    0.2 0.8473 0.7351
    0.5 0.8469 0.7344
    0.8 0.8471 0.7347
    1.0 0.8479 0.7360
    IOU、DSC:同表 1
    下载: 导出CSV

    表  3  不同损失函数对分割性能的影响

    损失函数 DSC IOU
    CE+CE 0.8411 0.7258
    CE+FW 0.8415 0.7263
    FW+FW 0.8425 0.7279
    FW+DWF 0.8438 0.7298
    DWF+DWF 0.8479 0.7360
    IOU、DSC:同表 1;CE:无加权的交叉熵损失函数;FW:固定权重的交叉熵损失函数;DWF:动态加权的交叉熵损失函数
    下载: 导出CSV

    表  4  不同像素级标注量对分割任务DSC的影响

    组别 0 1 5 10 20 25 30 40 50 75 100
    S组 0.596 0.641 0.648 0.728 0.803 0.836 0.841 0.849 0.853 0.859 0.868
    S+C组 0.685 0.722 0.731 0.831 0.835 0.839 0.844 0.854 0.855 0.860 0.871
    DSC:同表 1
    下载: 导出CSV

    表  5  不同像素级标注量对分割任务IOU的影响

    组别 0 1 5 10 20 25 30 40 50 75 100
    S组 0.425 0.472 0.480 0.573 0.671 0.719 0.727 0.739 0.745 0.753 0.767
    S+C组 0.522 0.566 0.578 0.692 0.718 0.724 0.731 0.746 0.748 0.755 0.773
    IOU:同表 1
    下载: 导出CSV

    表  6  不同像素级标注数据量下4种图像分割方法的DSC

    分割方法 0 1% 5% 10% 20% 50% 100%
    迁移学习 0.619 0.626 0.674 0.724 0.803 0.839 0.866
    多任务学习 0.626 0.634 0.654 0.751 0.812 0.829 0.853
    多示例学习 0.583 0.611 0.636 0.712 0.800 0.834 0.857
    本文方法 0.685 0.722 0.731 0.831 0.835 0.855 0.871
    DSC:同表 1
    下载: 导出CSV

    表  7  不同像素级标注数据量下4种图像分割方法的IOU

    分割方法 0 1% 5% 10% 20% 50% 100%
    迁移学习 0.449 0.456 0.509 0.568 0.671 0.723 0.764
    多任务学习 0.456 0.464 0.487 0.601 0.683 0.708 0.743
    多示例学习 0.412 0.440 0.467 0.553 0.667 0.716 0.751
    本文方法 0.522 0.566 0.578 0.692 0.718 0.748 0.773
    IOU:同表 1
    下载: 导出CSV
  • [1] Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2019[J]. CA Cancer J Clin, 2019, 69: 363-385. doi:  10.3322/caac.21565
    [2] Huang PW, Lee CH. Automatic classification for patholo-gical prostate images based on fractal analysis[J]. IEEE Trans Med Imaging, 2009, 2: 1037-1050.
    [3] Feng R, Liu X, Chen J, et al. A deep learning approach for colonoscopy pathology WSI analysis: accurate segmentation and classification[J]. IEEE J Biomed Health Inform, 2020, 25: 3700-3708.
    [4] Xu J, Cai C, Zhou Y, et al. Multi-tissue partitioning for whole slide images of colorectal cancer histopathology images with deeptissue net[C]. European Congress on Digital Pathology. Springer, 2019: 100-108.
    [5] Mehta S, Mercan E, Bartlett J, et al. Y-Net: joint segmentation and classification for diagnosis of breast biopsy images[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention, 2018: 893-901.
    [6] Xu J, Zhou C, Lang B, et al. Deep learning for histopathological image analysis: towards computerized diagnosis on cancers[C]. Deep Learning and Convolutional Neural Networks for Medical Image Computing, 2017: 73-95.
    [7] Iizuka O, Kanavati F, Kato K, et al. Deep learning models for histopathological classification of gastric and colonic epithelial tumours[J]. Sci Rep, 2020, 10: 1504. doi:  10.1038/s41598-020-58467-9
    [8] Ye J, Luo Y, Zhu C, et al. Breast cancer image classification on WSI with spatial correlations[C]. ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019: 1219-1223.
    [9] Xue Y, Ray N. Cell detection in microscopy images with deep convolutional neural network and compressed sensing[J]. arXiv, 2017. https://arxiv.org/abs/1708.03307v3.
    [10] Saleh F, Aliakbarian MS, Salzmann M, et al. Built-in foreground/background prior for weakly-supervised semantic segmentation[C]. European Conference on Computer Vision, 2016: 413-432.
    [11] Lempitsky V, Kohli P, Rother C, et al. Image segmentation with a bounding box prior[C]. 2009 IEEE 12th International Conference on Computer Vision, 2009: 277-284.
    [12] Zhou B, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2921-2929.
    [13] Jia Z, Huang X, Eric I, et al. Constrained deep weak supervision for histopathology image segmentation[J]. IEEE Trans Med Imaging, 2017, 36: 2376-2388. doi:  10.1109/TMI.2017.2724070
    [14] Chen Z, Chen Z, Liu J, et al. Weakly supervised histopathology image segmentation with sparse point annotations[J]. IEEE J Biomed Health Inform, 2020, 25: 1673-1685.
    [15] Gildenblat J, Klaiman E. Self-supervised similarity learning for digital pathology[J]. arXiv, 2019. https://arxiv.org/abs/1905.08139v3.
    [16] Srinidhi CL, Kim SW, Chen FD, et al. Self-supervised driven consistency training for annotation efficient histopathology image analysis[J]. Med Image Anal, 2022, 75: 102256. doi:  10.1016/j.media.2021.102256
    [17] Xu G, Song Z, Sun Z, et al. Camel: A weakly supervised learning framework for histopathology image segmentation[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 10682-10691.
    [18] Lerousseau M, Vakalopoulou M, Classe M, et al. Weakly supervised multiple instance learning histopathological tumor segmentation[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention, 2020: 470-479.
    [19] Yang Y, Yang Y, Yuan Y, et al. Detecting helicobacter pylori in whole slide images via weakly supervised multi-task learning[J]. Multimed Tools Appl, 2020, 79: 26787-26815. doi:  10.1007/s11042-020-09185-x
    [20] Ciga O, Martel AL. Learning to segment images with classification labels[J]. Med Image Anal, 2021, 68: 101912. doi:  10.1016/j.media.2020.101912
    [21] Mehta S, Rastegari M, Caspi A, et al. Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation[C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 552-568.
    [22] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]. International Conference on Machine Learning, 2015: 448-456.
    [23] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[C]. Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, 2011: 315-323.
    [24] Msonda P, Uymaz SA, Karaağaç SS. Spatial pyramid pooling in deep convolutional networks for automatic tuberculosis diagnosis[J]. Trait Signal, 2020, 37: 1075-1084. doi:  10.18280/ts.370620
    [25] 邓仕俊, 汤红忠, 曾黎, 等. 基于多尺度特征感知的胸腔图像危及器官分割[J]. 中国生物医学工程学报, 2021, 40: 701-711. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSWY202106007.htm
    [26] Abraham N, Khan NM. A novel focal tversky loss function with improved attention u-net for lesion segmentation[C]. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019: 683-687.
    [27] Fidon L, Li W, Garcia-Peraza-Herrera LC, et al. General-ised wasserstein dice score for imbalanced multi-class segmentation using holistic convolutional networks[C]. International Conference on Medical Image Computing and Computer-assisted Intervention, 2017: 64-76.
    [28] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
    [29] Zhang Z, Sabuncu M. Generalized cross entropy loss for training deep neural networks with noisy labels[J]. Adv Neural Inf Process Syst, 2018, 31: 8792-8802.
    [30] Celik Y, Talo M, Yildirim O, et al. Automated invasive ductal carcinoma detection based using deep transfer learning with whole-slide images[J]. Pattern Recogn Lett, 2020, 133: 232-239. doi:  10.1016/j.patrec.2020.03.011
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  427
  • HTML全文浏览量:  80
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-02
  • 录用日期:  2022-06-20
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!