留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

间充质干细胞在整形美容领域的应用

李竹君 王晨羽 龙笑

李竹君, 王晨羽, 龙笑. 间充质干细胞在整形美容领域的应用[J]. 协和医学杂志, 2022, 13(3): 370-376. doi: 10.12290/xhyxzz.2022-0036
引用本文: 李竹君, 王晨羽, 龙笑. 间充质干细胞在整形美容领域的应用[J]. 协和医学杂志, 2022, 13(3): 370-376. doi: 10.12290/xhyxzz.2022-0036
LI Zhujun, WANG Chenyu, LONG Xiao. Application of Mesenchymal Stem Cells in Plastic and Cosmetic Surgery[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 370-376. doi: 10.12290/xhyxzz.2022-0036
Citation: LI Zhujun, WANG Chenyu, LONG Xiao. Application of Mesenchymal Stem Cells in Plastic and Cosmetic Surgery[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 370-376. doi: 10.12290/xhyxzz.2022-0036

间充质干细胞在整形美容领域的应用

doi: 10.12290/xhyxzz.2022-0036
基金项目: 

国家重点研发计划 2020YFE0201600

中国医学科学院医学与健康科技创新工程 2020-I2M-C & T-A-004

详细信息
    通讯作者:

    龙笑, E-mail:pumclongxiao@126.com

  • 中图分类号: R622

Application of Mesenchymal Stem Cells in Plastic and Cosmetic Surgery

Funds: 

National Key R & D Program of China 2020YFE0201600

CAMS Innovation Fund for Medical Sciences 2020-I2M-C & T-A-004

More Information
  • 摘要: 间充质干细胞是具有自我更新和多向分化潜能的成体干细胞,存在于脂肪、骨髓和脐带等多种组织中,能通过直接分化或旁分泌的方式发挥修复组织缺损、促进血管生成、免疫调节、抗纤维化等多种作用。间充质干细胞在抗衰老、毛发/组织再生、创面愈合、抗纤维化等多个方面已有较为深入的研究,效果与安全性良好。未来仍需开展深入的基础研究以揭示其治疗机制,并进行长期的临床试验随访以考察其远期安全性。
    作者贡献:李竹君负责查阅文献、撰写论文;王晨羽、龙笑负责论文构思及终稿审核、修订。
    利益冲突:所有作者均声明不存在利益冲突
  • [1] Kulus M, Sibiak R, Stefańska K, et al. Mesenchymal Stem/Stromal Cells Derived from Human and Animal Perinatal Tissues-Origins, Characteristics, Signaling Pathways, and Clinical Trials[J]. Cells, 2021, 10: 3278. doi:  10.3390/cells10123278
    [2] Bora P, Majumdar AS. Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation[J]. Stem Cell Res Ther, 2017, 8: 145. doi:  10.1186/s13287-017-0598-y
    [3] Bagno LL, Salerno AG, Balkan W, et al. Mechanism of Action of Mesenchymal Stem Cells (MSCs): impact of delivery method[J]. Expert Opin Biol Ther, 2021: 1-15.
    [4] Liu YJ, Zhang TY, Tan PC, et al. Superiority of Adipose-derived CD34+Cells over Adipose-derived Stem Cells in Promoting Ischemic Tissue Survival[J]. Stem Cell Rev Rep, 2022, 18: 660-671. doi:  10.1007/s12015-021-10276-x
    [5] Prockop DJ, Oh JY, Lee RH. Data against a Common Assumption: Xenogeneic Mouse Models Can Be Used to Assay Suppression of Immunity by Human MSCs[J]. Mol Ther, 2017, 25: 1748-1756. doi:  10.1016/j.ymthe.2017.06.004
    [6] Li ZJ, Wang LQ, Li YZ, et al. Application of adipose-derived stem cells in treating fibrosis[J]. World J Stem Cells, 2021, 13: 1747-1761. doi:  10.4252/wjsc.v13.i11.1747
    [7] Zhang S, Dong Z, Peng Z, et al. Anti-aging effect of adipose-derived stem cells in a mouse model of skin aging induced by D-galactose[J]. PLoS One, 2014, 9: e97573. doi:  10.1371/journal.pone.0097573
    [8] Pang SHM, D'rozario J, Mendonca S, et al. Mesenchymal stromal cell apoptosis is required for their therapeutic function[J]. Nat Commun, 2021, 12: 6495. doi:  10.1038/s41467-021-26834-3
    [9] de Witte SFH, Luk F, Sierra Parraga JM, et al. Immunomodulation By Therapeutic Mesenchymal Stromal Cells (MSC) Is Triggered Through Phagocytosis of MSC By Monocytic Cells[J]. Stem Cells, 2018, 36: 602-615. doi:  10.1002/stem.2779
    [10] Qian L, Pi L, Fang BR, et al. Adipose mesenchymal stem cell-derived exosomes accelerate skin wound healing via the lncRNA H19/miR-19b/SOX9 axis[J]. Lab Invest, 2021, 101: 1254-1266. doi:  10.1038/s41374-021-00611-8
    [11] Han B, Zhang Y, Xiao Y, et al. Adipose-Derived Stem Cell-Derived Extracellular Vesicles Inhibit the Fibrosis of Fibrotic Buccal Mucosal Fibroblasts via the MicroRNA-375/FOXF1 Axis[J]. Stem Cells Int, 2021, 2021: 9964159.
    [12] Li Y, Zhang J, Shi J, et al. Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis[J]. Stem Cell Res Ther, 2021, 12: 221. doi:  10.1186/s13287-021-02290-0
    [13] Guo S, Wang T, Zhang S, et al. Adipose-derived stem cell-conditioned medium protects fibroblasts at different senescent degrees from UVB irradiation damages[J]. Mol Cell Biochem, 2020, 463: 67-78. doi:  10.1007/s11010-019-03630-8
    [14] Liang JX, Liao X, Li SH, et al. Antiaging Properties of Exosomes from Adipose-Derived Mesenchymal Stem Cells in Photoaged Rat Skin[J]. Biomed Res Int, 2020, 2020: 6406395.
    [15] Li L, Ngo HTT, Hwang E, et al. Conditioned Medium from Human Adipose-Derived Mesenchymal Stem Cell Culture Prevents UVB-Induced Skin Aging in Human Keratinocytes and Dermal Fibroblasts[J]. Int J Mol Sci, 2019, 21: 49. doi:  10.3390/ijms21010049
    [16] Charles-De-Sá L, Gontijo-De-Amorim NF, Rigotti G, et al. Photoaged Skin Therapy with Adipose-Derived Stem Cells[J]. Plast Reconstr Surg, 2020, 145: 1037e-1049e. doi:  10.1097/PRS.0000000000006867
    [17] Rasko YM, Beale E, Rohrich RJ. Secondary rhytidectomy: comprehensive review and current concepts[J]. Plast Reconstr Surg, 2012, 130: 1370-1378. doi:  10.1097/PRS.0b013e31826d9eea
    [18] Pathak A, Mohan R, Rohrich RJ. Chemical Peels: Role of Chemical Peels in Facial Rejuvenation Today[J]. Plast Reconstr Surg, 2020, 145: 58e-66e. doi:  10.1097/PRS.0000000000006346
    [19] Janes LE, Connor LM, Moradi A, et al. Current Use of Cosmetic Toxins to Improve Facial Aesthetics[J]. Plast Reconstr Surg, 2021, 147: 644e-657e. doi:  10.1097/PRS.0000000000007762
    [20] Sanniec K, Afrooz PN, Burns AJ. Long-Term Assessment of Perioral Rhytide Correction with Erbium: YAG Laser Resurfacing[J]. Plast Reconstr Surg, 2019, 143: 64-74. doi:  10.1097/PRS.0000000000005163
    [21] Mckee D, Remington K, Swift A, et al. Effective Rejuvenation with Hyaluronic Acid Fillers: Current Advanced Concepts[J]. Plast Reconstr Surg, 2019, 143: 1277e-1289e. doi:  10.1097/PRS.0000000000005607
    [22] Azoury SC, Shakir S, Bucky LP, et al. Modern Fat Grafting Techniques to the Face and Neck[J]. Plast Reconstr Surg, 2021, 148: 620e-633e. doi:  10.1097/PRS.0000000000008405
    [23] Ring CM, Finney R, Avram M. Lasers, lights, and compounds for hair loss in aesthetics[J]. Clin Dermatol, 2022, 40: 64-75. doi:  10.1016/j.clindermatol.2021.08.013
    [24] Guo Y, Hu Z, Chen J, et al. Feasibility of adipose-derived therapies for hair regeneration: insights based on signaling interplay and clinical overview[J]. J Am Acad Dermatol, 2021. doi:  10.1016/j.jaad.2021.11.058.
    [25] Rivera-Gonzalez GC, Shook BA, Andrae J, et al. Skin Adipocyte Stem Cell Self-Renewal Is Regulated by a PDGFA/AKT-Signaling Axis[J]. Cell Stem Cell, 2016, 19: 738-751. doi:  10.1016/j.stem.2016.09.002
    [26] Yano K, Brown LF, Detmar M. Control of hair growth and follicle size by VEGF-mediated angiogenesis[J]. J Clin Invest, 2001, 107: 409-417. doi:  10.1172/JCI11317
    [27] Lee YJ, Park SH, Park HR, et al. Mesenchymal Stem Cells Antagonize IFN-Induced Proinflammatory Changes and Growth Inhibition Effects via Wnt/β-Catenin and JAK/STAT Pathway in Human Outer Root Sheath Cells and Hair Follicles[J]. Int J Mol Sci, 2021, 22: 4581. doi:  10.3390/ijms22094581
    [28] Ahn H, Lee SY, Jung WJ, et al. Alopecia treatment using minimally manipulated human umbilical cord-derived mesenchymal stem cells: Three case reports and review of literature[J]. World J Clin Cases, 2021, 9: 3741-3751. doi:  10.12998/wjcc.v9.i15.3741
    [29] Czarnecka A, Odziomek A, Murzyn M, et al. Wharton's jelly-derived mesenchymal stem cells in the treatment of four patients with alopecia areata[J]. Adv Clin Exp Med, 2021, 30: 211-218. doi:  10.17219/acem/132069
    [30] Lee YI, Kim J, Kim J, et al. The Effect of Conditioned Media From Human Adipocyte-Derived Mesenchymal Stem Cells on Androgenetic Alopecia After Nonablative Fractional Laser Treatment[J]. Dermatol Surg, 2020, 46: 1698-1704. doi:  10.1097/DSS.0000000000002518
    [31] Kim SJ, Kim MJ, Lee YJ, et al. Innovative method of alopecia treatment by autologous adipose-derived SVF[J]. Stem Cell Res Ther, 2021, 12: 486. doi:  10.1186/s13287-021-02557-6
    [32] Kuhlmann C, Blum JC, Schenck TL, et al. Evaluation of the Usability of a Low-Cost 3D Printer in a Tissue Engineer-ing Approach for External Ear Reconstruction[J]. Int J Mol Sci, 2021, 22: 11667. doi:  10.3390/ijms222111667
    [33] Torres-Guzman RA, Huayllani MT, Avila FR, et al. Application of Human Adipose-Derived Stem cells for Bone Regeneration of the Skull in Humans[J]. J Craniofac Surg, 2022, 33: 360-363. doi:  10.1097/SCS.0000000000008114
    [34] Yang Y, Kulkarni A, Soraru GD, et al. 3D Printed SiOC(N) Ceramic Scaffolds for Bone Tissue Regeneration: Improved Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells[J]. Int J Mol Sci, 2021, 22: 13676. doi:  10.3390/ijms222413676
    [35] Dai T, Jiang Z, Cui C, et al. The Roles of Podoplanin-Positive/Podoplanin-Negative Cells from Adipose-Derived Stem Cells in Lymphatic Regeneration[J]. Plast Reconstr Surg, 2020, 145: 420-431. doi:  10.1097/PRS.0000000000006474
    [36] Li ZJ, Yang E, Li YZ, et al. Application and prospect of adipose stem cell transplantation in treating lymphedema[J]. World J Stem Cells, 2020, 12: 676-687. doi:  10.4252/wjsc.v12.i7.676
    [37] Wang JW, Zhu YZ, Hu X, et al. Extracellular vesicles derived from adipose-derived stem cells accelerate diabetic wound healing by suppressing the expression of matrix metalloproteinase-9[J]. Curr Pharm Biotechnol, 2022, 23: 894-901. doi:  10.2174/1389201022666210719154009
    [38] Zhou J, Wei T, He Z. ADSCs enhance VEGFR3-mediated lymphangiogenesis via METTL3-mediated VEGF-C m(6)A modification to improve wound healing of diabetic foot ulcers[J]. Mol Med, 2021, 27: 146.
    [39] Ma J, Zhang Z, Wang Y, et al. Investigation of miR-126-3p loaded on adipose stem cell-derived exosomes for wound healing of full-thickness skin defects[J]. Exp Dermatol, 2022, 31: 362-374. doi:  10.1111/exd.14480
    [40] Pi L, Yang L, Fang BR, et al. Exosomal microRNA-125a-3p from human adipose-derived mesenchymal stem cells promotes angiogenesis of wound healing through inhibiting PTEN[J]. Mol Cell Biochem, 2022, 477: 115-127. doi:  10.1007/s11010-021-04251-w
    [41] Tanios E, Ahmed TM, Shafik EA, et al. Efficacy of adipose-derived stromal vascular fraction cells in the mana-gement of chronic ulcers: a randomized clinical trial[J]. Regen Med, 2021, 16: 975-988. doi:  10.2217/rme-2020-0207
    [42] Wu Y, Liang T, Hu Y, et al. 3D bioprinting of integral ADSCs-NO hydrogel scaffolds to promote severe burn wound healing[J]. Regen Biomater, 2021, 8: rbab014. doi:  10.1093/rb/rbab014
    [43] Camargo CP, Kubrusly MS, Morais-Besteiro J, et al. The influence of adipocyte-derived stem cells (ASCs) on the ischemic epigastric flap survival in diabetic rats[J]. Acta Cir Bras, 2021, 36: e360907. doi:  10.1590/acb360907
    [44] Zhang C, Wang T, Zhang L, et al. Combination of lyophilized adipose-derived stem cell concentrated conditioned medium and polysaccharide hydrogel in the inhibition of hypertrophic scarring[J]. Stem Cell Res Ther, 2021, 12: 23. doi:  10.1186/s13287-020-02061-3
    [45] Arjunan S, Gan SU, Choolani M, et al. Inhibition of growth of Asian keloid cells with human umbilical cord Wharton's jelly stem cell-conditioned medium[J]. Stem Cell Res Ther, 2020, 11: 78. doi:  10.1186/s13287-020-01609-7
    [46] Ejaz A, Epperly MW, Hou W, et al. Adipose-Derived Stem Cell Therapy Ameliorates Ionizing Irradiation Fibrosis via Hepatocyte Growth Factor-Mediated Transforming Growth Factor-β Downregulation and Recruitment of Bone Marrow Cells[J]. Stem Cells, 2019, 37: 791-802. doi:  10.1002/stem.3000
    [47] Kodumudi V, Bibb LA, Adalsteinsson JA, et al. Emerging Therapeutics in the Management of Connective Tissue Disease. Part Ⅱ. Dermatomyositis and Scleroderma[J]. J Am Acad Dermatol, 2022. doi: 10.1016/j.jaad.2021.12.068.
    [48] Granel B, Daumas A, Jouve E, et al. Safety, tolerability and potential efficacy of injection of autologous adipose-derived stromal vascular fraction in the fingers of patients with systemic sclerosis: an open-label phase I trial[J]. Ann Rheum Dis, 2015, 74: 2175-2182. doi:  10.1136/annrheumdis-2014-205681
    [49] Almadori A, Griffin M, Ryan CM, et al. Stem cell enriched lipotransfer reverses the effects of fibrosis in systemic sclerosis[J]. PLoS One, 2019, 14: e0218068.
    [50] Wang C, Long X, Si L, et al. A pilot study on ex vivo expanded autologous adipose-derived stem cells of improving fat retention in localized scleroderma patients[J]. Stem Cells Transl Med, 2021, 10: 1148-1156. doi:  10.1002/sctm.20-0419
    [51] Al-Shaibani MBH. Three-dimensional cell culture (3DCC) improves secretion of signaling molecules of mesenchymal stem cells (MSCs)[J]. Biotechnol Lett, 2022, 44: 143-155. doi:  10.1007/s10529-021-03216-9
    [52] Jurj A, Pasca S, Braicu C, et al. Focus on organoids: cooperation and interconnection with extracellular vesicles-is this the future of in vitro modeling?[J]. Semin Cancer Biol, 2021. doi:  10.1016/j.semcancer.2021.12.002.
    [53] Ren J, Kong W, Lu F, et al. Adipose-derived stem cells (ADSCs) inhibit the expression of anti-apoptosis proteins through up-regulation of ATF4 on breast cancer cells[J]. Ann Transl Med, 2021, 9: 1300. doi:  10.21037/atm-21-3746
    [54] Storti G, Scioli MG, Kim BS, et al. Mesenchymal Stem Cells in Adipose Tissue and Extracellular Vesicles in Ovarian Cancer Patients: A Bridge toward Metastatic Diffusion or a New Therapeutic Opportunity?[J]. Cells, 2021, 10: 2117. doi:  10.3390/cells10082117
    [55] Di Franco S, Bianca P, Sardina DS, et al. Adipose stem cell niche reprograms the colorectal cancer stem cell metastatic machinery[J]. Nat Commun, 2021, 12: 5006. doi:  10.1038/s41467-021-25333-9
    [56] Hamilton G, Teufelsbauer M. Adipose-derived stromal/stem cells and extracellular vesicles for cancer therapy[J]. Expert Opin Biol Ther, 2022, 22: 67-78. doi:  10.1080/14712598.2021.1954156
    [57] Chiu TL, Baskaran R, Tsai ST, et al. Intracerebral transplantation of autologous adipose-derived stem cells for chronic ischemic stroke: A phase I study[J]. J Tissue Eng Regen Med, 2022, 16: 3-13. doi:  10.1002/term.3256
    [58] Chen CF, Hu CC, Wu CT, et al. Treatment of knee osteoarthritis with intra-articular injection of allogeneic adipose-derived stem cells (ADSCs) ELIXCYTE: a phase Ⅰ/Ⅱ, randomized, active-control, single-blind, multiple-center clinical trial[J]. Stem Cell Res Ther, 2021, 12: 562. doi:  10.1186/s13287-021-02631-z
    [59] Garcia-Olmo D, Gilaberte I, Binek M, et al. Follow-up Study to Evaluate the Long-term Safety and Efficacy of Darvadstrocel (Mesenchymal Stem Cell Treatment) in Patients with Perianal Fistulizing Crohn's Disease: ADMIRE-CD Phase 3 Randomized Controlled Trial[J]. Dis Colon Rectum, 2022, 65: 713-720. doi:  10.1097/DCR.0000000000002325
    [60] Panés J, García-Olmo D, Van Assche G, et al. Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn's disease: a phase 3 randomised, double-blind controlled trial[J]. Lancet, 2016, 388: 1281-1290. doi:  10.1016/S0140-6736(16)31203-X
    [61] Cho YJ, Kwon H, Kwon YJ, et al. Efficacy and safety of autologous adipose tissue-derived stem cell therapy for children with refractory Crohn's complex fistula: a Phase IV clinical study[J]. Ann Surg Treat Res, 2021, 101: 58-64. doi:  10.4174/astr.2021.101.1.58
    [62] Cheng RJ, Xiong AJ, Li YH, et al. Mesenchymal Stem Cells: Allogeneic MSC May Be Immunosuppressive but Autologous MSC Are Dysfunctional in Lupus Patients[J]. Front Cell Dev Biol, 2019, 7: 285. doi:  10.3389/fcell.2019.00285
    [63] Chu CF, Mao SH, Shyu VB, et al. Allogeneic Bone-Marrow Mesenchymal Stem Cell with Moldable Cryogel for Craniofacial Bone Regeneration[J]. J Pers Med, 2021, 11: 1326. doi:  10.3390/jpm11121326
  • 加载中
计量
  • 文章访问数:  1195
  • HTML全文浏览量:  213
  • PDF下载量:  403
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-24
  • 录用日期:  2022-04-06
  • 网络出版日期:  2022-04-19
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!