留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乳腺癌影像组学研究进展

罗焱文 朱庆莉

罗焱文, 朱庆莉. 乳腺癌影像组学研究进展[J]. 协和医学杂志, 2021, 12(6): 983-988. doi: 10.12290/xhyxzz.2021-0011
引用本文: 罗焱文, 朱庆莉. 乳腺癌影像组学研究进展[J]. 协和医学杂志, 2021, 12(6): 983-988. doi: 10.12290/xhyxzz.2021-0011
LUO Yanwen, ZHU Qingli. Application of Radiomics in Breast Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 983-988. doi: 10.12290/xhyxzz.2021-0011
Citation: LUO Yanwen, ZHU Qingli. Application of Radiomics in Breast Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 983-988. doi: 10.12290/xhyxzz.2021-0011

乳腺癌影像组学研究进展

doi: 10.12290/xhyxzz.2021-0011
基金项目: 

国家自然科学基金 81771855

中国医学科学院医学与健康科技创新工程项目 2020-I2M-C&T-B-033

详细信息
    通讯作者:

    朱庆莉  电话:010-69155494,E-mail:zqlpumch@126.com

  • 中图分类号: R445.1;R737.9

Application of Radiomics in Breast Cancer

Funds: 

National Natural Science Foundation of China 81771855

CAMS Innovation Fund for Medical Science 2020-I2M-C&T-B-033

More Information
    Corresponding author: ZHU Qingli  Tel: 86-10-69155494, E-mail: zqlpumch@126.com
  • 摘要: 乳腺癌是我国女性最常见的恶性肿瘤,如何更好地对其进行早期诊断、治疗和预后评估是临床亟待解决的问题。影像组学以非侵入性方式高通量提取并分析病灶的图像特征,可提供更多潜在的肿瘤信息,进而指导临床进行精准诊疗。近年来,影像组学在乳腺癌领域的研究被广泛关注,涉及乳腺癌患者全程管理的各个环节,诊断方面研究已趋于成熟,逐步进入临床转化阶段,疗效评估和预后预测尽管尚处于初步探索阶段,但具有广阔的发展前景。本文从诊断、疗效评估和预后预测三个方面进行综述,以期为临床诊疗提供借鉴。
    作者贡献:罗焱文负责文献收集、论文撰写及校对; 朱庆莉负责论文选题构思和修订。
    利益冲突:
  • [1] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66: 115-132. doi:  10.3322/caac.21338
    [2] Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48: 441-446. doi:  10.1016/j.ejca.2011.11.036
    [3] Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data[J]. Radiology, 2016, 278: 563-577. doi:  10.1148/radiol.2015151169
    [4] Hooley RJ, Scoutt LM, Philpotts LE. Breast ultrasonography: state of the art[J]. Radiology, 2013, 268: 642-659. doi:  10.1148/radiol.13121606
    [5] Chitalia RD, Kontos D. Role of texture analysis in breast MRI as a cancer biomarker: A review[J]. J Magn Reson Imaging, 2019, 49: 927-938. doi:  10.1002/jmri.26556
    [6] Jiang Y, Edwards AV, Newstead GM. Artificial Intelli-gence Applied to Breast MRI for Improved Diagnosis[J]. Radiology, 2021, 298: 38-46. doi:  10.1148/radiol.2020200292
    [7] Li J, Sang T, Yu WH, et al. The value of S-Detect for the differential diagnosis of breast masses on ultrasound: a systematic review and pooled meta-analysis[J]. Med Ultrason, 2020, 22: 211-219. doi:  10.11152/mu-2402
    [8] Mao N, Yin P, Wang Q, et al. Added Value of Radiomics on Mammography for Breast Cancer Diagnosis: A Feasibility Study[J]. J Am Coll Radiol, 2019, 16: 485-491. doi:  10.1016/j.jacr.2018.09.041
    [9] McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening[J]. Nature, 2020, 577: 89-94. doi:  10.1038/s41586-019-1799-6
    [10] Li H, Mendel KR, Lan L, et al. Digital Mammography in Breast Cancer: Additive Value of Radiomics of Breast Parenchyma[J]. Radiology, 2019, 291: 15-20. doi:  10.1148/radiol.2019181113
    [11] Zhou J, Zhang Y, Chang KT, et al. Diagnosis of Benign and Malignant Breast Lesions on DCE-MRI by Using Radiomics and Deep Learning With Consideration of Peritumor Tissue[J]. J Magn Reson Imaging, 2020, 51: 798-809. doi:  10.1002/jmri.26981
    [12] Lee SE, Han K, Kwak JY, et al. Radiomics of US texture features in differential diagnosis between triple-negative breast cancer and fibroadenoma[J]. Sci Rep, 2018, 8: 13546. doi:  10.1038/s41598-018-31906-4
    [13] Luo WQ, Huang QX, Huang XW, et al. Predicting Breast Cancer in Breast Imaging Reporting and Data System (BI-RADS) Ultrasound Category 4 or 5 Lesions: A Nomogram Combining Radiomics and BI-RADS[J]. Sci Rep, 2019, 9: 11921. doi:  10.1038/s41598-019-48488-4
    [14] Hao W, Gong J, Wang S, et al. Application of MRI Radiomics-Based Machine Learning Model to Improve Contralateral BI-RADS 4 Lesion Assessment[J]. Front Oncol, 2020, 10: 531476. doi:  10.3389/fonc.2020.531476
    [15] Zhang X, Liang M, Yang Z, et al. Deep Learning-Based Radiomics of B-Mode Ultrasonography and Shear-Wave Elastography: Improved Performance in Breast Mass Classifica-tion[J]. Front Oncol, 2020, 10: 1621. doi:  10.3389/fonc.2020.01621
    [16] Wilke LG, McCall LM, Posther KE, et al. Surgical complications associated with sentinel lymph node biopsy: results from a prospective international cooperative group trial[J]. Ann Surg Oncol, 2006, 13: 491-500. doi:  10.1245/ASO.2006.05.013
    [17] Hindié E, Groheux D, Brenot-Rossi I, et al. The sentinel node procedure in breast cancer: nuclear medicine as the starting point[J]. J Nucl Med, 2011, 52: 405-414. doi:  10.2967/jnumed.110.081711
    [18] Cui X, Wang N, Zhao Y, et al. Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer using Radiomics Features of DCE-MRI[J]. Sci Rep, 2019, 9: 2240. doi:  10.1038/s41598-019-38502-0
    [19] Liu J, Sun D, Chen L, et al. Radiomics Analysis of Dynamic Contrast-Enhanced Magnetic Resonance Imaging for the Prediction of Sentinel Lymph Node Metastasis in Breast Cancer[J]. Front Oncol, 2019, 9: 980. doi:  10.3389/fonc.2019.00980
    [20] Schiano C, Franzese M, Pane K, et al. Hybrid (18)F-FDG-PET/MRI Measurement of Standardized Uptake Value Coupled with Yin Yang 1 Signature in Metastatic Breast Cancer. A Preliminary Study[J]. Cancers (Basel), 2019, 11: 1444. doi:  10.3390/cancers11101444
    [21] Yang J, Wang T, Yang L, et al. Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Using Mammography-Based Radiomics Method[J]. Sci Rep, 2019, 9: 4429. doi:  10.1038/s41598-019-40831-z
    [22] Mao N, Yin P, Li Q, et al. Radiomics nomogram of contrast-enhanced spectral mammography for prediction of axillary lymph node metastasis in breast cancer: a multicenter study[J]. Eur Radiol, 2020, 30: 6732-6739. doi:  10.1007/s00330-020-07016-z
    [23] Giuliano AE, Ballman KV, McCall L, et al. Effect of Axillary Dissection vs No Axillary Dissection on 10-Year Overall Survival Among Women With Invasive Breast Cancer and Sentinel Node Metastasis: The ACOSOG Z0011 (Alliance) Randomized Clinical Trial[J]. JAMA, 2017, 318: 918-926. doi:  10.1001/jama.2017.11470
    [24] Zheng X, Yao Z, Huang Y, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer[J]. Nat Commun, 2020, 11: 1236. doi:  10.1038/s41467-020-15027-z
    [25] Gao Y, Luo Y, Zhao C, et al. Nomogram based on radiomics analysis of primary breast cancer ultrasound images: prediction of axillary lymph node tumor burden in patients[J]. Eur Radiol, 2021, 31: 928-937. doi:  10.1007/s00330-020-07181-1
    [26] Guo X, Liu Z, Sun C, et al. Deep learning radiomics of ultrasonography: Identifying the risk of axillary non-sentinel lymph node involvement in primary breast cancer[J]. EBioMedicine, 2020, 60: 103018. doi:  10.1016/j.ebiom.2020.103018
    [27] Liu C, Ding J, Spuhler K, et al. Preoperative prediction of sentinel lymph node metastasis in breast cancer by radiomic signatures from dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2019, 49: 131-140. doi:  10.1002/jmri.26224
    [28] Goetz MP, Gradishar WJ, Anderson BO, et al. NCCN Guidelines Insights: Breast Cancer, Version 3.2018[J]. J Natl Compr Canc Netw, 2019, 17: 118-126. doi:  10.6004/jnccn.2019.0009
    [29] Li P, Wang X, Xu C, et al. (18)F-FDG PET/CT radiomic predictors of pathologic complete response (pCR) to neoadjuvant chemotherapy in breast cancer patients[J]. Eur J Nucl Med Mol Imaging, 2020, 47: 1116-1126. doi:  10.1007/s00259-020-04684-3
    [30] Chen S, Shu Z, Li Y, et al. Machine Learning-Based Radiomics Nomogram Using Magnetic Resonance Images for Prediction of Neoadjuvant Chemotherapy Efficacy in Breast Cancer Patients[J]. Front Oncol, 2020, 10: 1410. doi:  10.3389/fonc.2020.01410
    [31] Liu Z, Li Z, Qu J, et al. Radiomics of Multiparametric MRI for Pretreatment Prediction of Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer: A Multicenter Study[J]. Clin Cancer Res, 2019, 25: 3538-3547. doi:  10.1158/1078-0432.CCR-18-3190
    [32] Antunovic L, De Sanctis R, Cozzi L, et al. PET/CT radiomics in breast cancer: promising tool for prediction of pathological response to neoadjuvant chemotherapy[J]. Eur J Nucl Med Mol Imaging, 2019, 46: 1468-1477. doi:  10.1007/s00259-019-04313-8
    [33] Braman NM, Etesami M, Prasanna P, et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J]. Breast Cancer Res, 2017, 19: 57. doi:  10.1186/s13058-017-0846-1
    [34] Sutton EJ, Onishi N, Fehr DA, et al. A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy[J]. Breast Cancer Res, 2020, 22: 57. doi:  10.1186/s13058-020-01291-w
    [35] Bitencourt AGV, Gibbs P, Rossi Saccarelli C, et al. MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer[J]. EBioMedicine, 2020, 61: 103042. doi:  10.1016/j.ebiom.2020.103042
    [36] Moscoso A, Ruibal A, Dominguez-Prado I, et al. Texture analysis of high-resolution dedicated breast (18) F-FDG PET images correlates with immunohistochemical factors and subtype of breast cancer[J]. Eur J Nucl Med Mol Imaging, 2018, 45: 196-206. doi:  10.1007/s00259-017-3830-1
    [37] Antunovic L, Gallivanone F, Sollini M, et al. [(18)F]FDG PET/CT features for the molecular characterization of primary breast tumors[J]. Eur J Nucl Med Mol Imaging, 2017, 44: 1945-1954. doi:  10.1007/s00259-017-3770-9
    [38] Fan M, Yuan W, Zhao W, et al. Joint Prediction of Breast Cancer Histological Grade and Ki-67 Expression Level Based on DCE-MRI and DWI Radiomics[J]. IEEE J Biomed Health Inform, 2020, 24: 1632-1642. doi:  10.1109/JBHI.2019.2956351
    [39] Yang X, Wu L, Zhao K, et al. Evaluation of human epidermal growth factor receptor 2 status of breast cancer using preoperative multidetector computed tomography with deep learning and handcrafted radiomics features[J]. Chin J Cancer Res, 2020, 32: 175-185. doi:  10.21147/j.issn.1000-9604.2020.02.05
    [40] Leithner D, Bernard-Davila B, Martinez DF, et al. Radiomic Signatures Derived from Diffusion-Weighted Imaging for the Assessment of Breast Cancer Receptor Status and Molecular Subtypes[J]. Mol Imaging Biol, 2020, 22: 453-461. doi:  10.1007/s11307-019-01383-w
    [41] Parekh VS, Jacobs MA. Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging[J]. Breast Cancer Res Treat, 2020, 180: 407-421. doi:  10.1007/s10549-020-05533-5
    [42] Leithner D, Mayerhoefer ME, Martinez DF, et al. Non-Invasive Assessment of Breast Cancer Molecular Subtypes with Multiparametric Magnetic Resonance Imaging Radiomics[J]. J Clin Med, 2020, 9: 1853. doi:  10.3390/jcm9061853
    [43] Xie T, Wang Z, Zhao Q, et al. Machine Learning-Based Analysis of MR Multiparametric Radiomics for the Subtype Classification of Breast Cancer[J]. Front Oncol, 2019, 9: 505. doi:  10.3389/fonc.2019.00505
    [44] Huang SY, Franc BL, Harnish RJ, et al. Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis[J]. NPJ Breast Cancer, 2018, 4: 24. doi:  10.1038/s41523-018-0078-2
    [45] Park H, Lim Y, Ko ES, et al. Radiomics Signature on Magnetic Resonance Imaging: Association with Disease-Free Survival in Patients with Invasive Breast Cancer[J]. Clin Cancer Res, 2018, 24: 4705-4714. doi:  10.1158/1078-0432.CCR-17-3783
    [46] Kim S, Kim MJ, Kim EK, et al. MRI Radiomic Features: Association with Disease-Free Survival in Patients with Triple-Negative Breast Cancer[J]. Sci Rep, 2020, 10: 3750. doi:  10.1038/s41598-020-60822-9
    [47] Koh J, Lee E, Han K, et al. Three-dimensional radiomics of triple-negative breast cancer: Prediction of systemic recurrence[J]. Sci Rep, 2020, 10: 2976. doi:  10.1038/s41598-020-59923-2
  • 加载中
计量
  • 文章访问数:  750
  • HTML全文浏览量:  116
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-05
  • 录用日期:  2021-02-23
  • 网络出版日期:  2021-11-04
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!